BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 31176940)

  • 1. Removal of sulfamethoxazole (SMX) in sulfate-reducing flocculent and granular sludge systems.
    Qiu LQ; Zhang L; Tang K; Chen G; Kumar Khanal S; Lu H
    Bioresour Technol; 2019 Sep; 288():121592. PubMed ID: 31176940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sulfamethoxazole degradation in anaerobic sulfate-reducing bacteria sludge system.
    Jia Y; Khanal SK; Zhang H; Chen GH; Lu H
    Water Res; 2017 Aug; 119():12-20. PubMed ID: 28433879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of antibiotic sulfamethoxazole by anoxic/anaerobic/oxic granular and suspended activated sludge processes.
    Kang AJ; Brown AK; Wong CS; Yuan Q
    Bioresour Technol; 2018 Mar; 251():151-157. PubMed ID: 29274854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of sulfate-reducing granular sludge in the SANI(®) process.
    Hao T; Wei L; Lu H; Chui H; Mackey HR; van Loosdrecht MC; Chen G
    Water Res; 2013 Dec; 47(19):7042-52. PubMed ID: 24200003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into pharmaceuticals removal in an anaerobic sulfate-reducing bacteria sludge system.
    Jia Y; Zhang H; Khanal SK; Yin L; Lu H
    Water Res; 2019 Sep; 161():191-201. PubMed ID: 31195335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variation in bacterial community structure of aerobic granular and suspended activated sludge in the presence of the antibiotic sulfamethoxazole.
    Kang AJ; Brown AK; Wong CS; Huang Z; Yuan Q
    Bioresour Technol; 2018 Aug; 261():322-328. PubMed ID: 29677660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physicochemical and biological characterization of long-term operated sulfate reducing granular sludge in the SANI® process.
    Hao T; Luo J; Wei L; Mackey HR; Liu R; Rey Morito G; Chen GH
    Water Res; 2015 Mar; 71():74-84. PubMed ID: 25600299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Adsorption Mechanisms of Ciprofloxacin by Extracellular Polymeric Substances of Sulfate-reducing Bacteria Sludge].
    Zhang HQ; Jia YY; Fang HT; Yin LW; Lü H
    Huan Jing Ke Xue; 2018 Oct; 39(10):4653-4660. PubMed ID: 30229614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the Role of Extracellular Polymeric Substances on Ciprofloxacin Adsorption in Aerobic Sludge, Anaerobic Sludge, and Sulfate-Reducing Bacteria Sludge Systems.
    Zhang H; Jia Y; Khanal SK; Lu H; Fang H; Zhao Q
    Environ Sci Technol; 2018 Jun; 52(11):6476-6486. PubMed ID: 29757630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of some characteristics of aerobic granules and sludge flocs from sequencing batch reactors.
    Li J; Garny K; Neu T; He M; Lindenblatt C; Horn H
    Water Sci Technol; 2007; 55(8-9):403-11. PubMed ID: 17547011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stress-responses of activated sludge and anaerobic sulfate-reducing bacteria sludge under long-term ciprofloxacin exposure.
    Zhang H; Song S; Jia Y; Wu D; Lu H
    Water Res; 2019 Nov; 164():114964. PubMed ID: 31419666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficiency of sulfamethoxazole removal from wastewater using aerobic granular sludge: influence of environmental factors.
    Cui D; Chen Z; Cheng X; Zheng G; Sun Y; Deng H; Li W
    Biodegradation; 2021 Dec; 32(6):663-676. PubMed ID: 34482495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of sulfate-reducing bacteria anaerobic sludge granulation enhanced by chitosan.
    Guo J; Kang Y
    J Environ Manage; 2020 Jan; 253():109648. PubMed ID: 31634741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploration of sulfate reducing sludge granulation with real domestic sulfate-laden wastewater.
    Hao T; Xiang P
    Sci Total Environ; 2020 Nov; 743():140734. PubMed ID: 32673917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sulfamethoxazole impact on pollutant removal and microbial community of aerobic granular sludge with filamentous bacteria.
    Song T; Zhang X; Li J; Xie W; Dong W; Wang H
    Bioresour Technol; 2023 Jul; 379():128823. PubMed ID: 36871701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of sulfamethoxazole on aerobic sludge granulation process.
    Cui D; Wei N; Ling N; Zheng G; Sun Y; Chen Z; Zou X; Deng H; Li W
    J Appl Microbiol; 2022 Feb; 132(2):1091-1103. PubMed ID: 34453874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of organic loading rate on ciprofloxacin and sulfamethoxazole biodegradation in anaerobic fixed bed biofilm reactors.
    Carneiro RB; Mukaeda CM; Sabatini CA; Santos-Neto ÁJ; Zaiat M
    J Environ Manage; 2020 Nov; 273():111170. PubMed ID: 32763746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a new continuous gas-mixing sulfidogenic anaerobic bioreactor: Hydrodynamics and sludge granulation.
    Wang B; Wu D; Ekama GA; Tsui TH; Jiang F; Chen GH
    Water Res; 2018 May; 135():251-261. PubMed ID: 29477063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feasibility of anaerobic packed and structured-bed reactors for sulfamethoxazole and ciprofloxacin removal from domestic sewage.
    Carneiro RB; Sabatini CA; Santos-Neto ÁJ; Zaiat M
    Sci Total Environ; 2019 Aug; 678():419-429. PubMed ID: 31077920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.