These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 31176972)
1. Prediction of nitrate accumulation and leaching beneath groundwater irrigated corn fields in the Upper Platte basin under a future climate scenario. Akbariyeh S; Pena CAG; Wang T; Mohebbi A; Bartelt-Hunt S; Zhang J; Li Y Sci Total Environ; 2019 Oct; 685():514-526. PubMed ID: 31176972 [TBL] [Abstract][Full Text] [Related]
2. Three-dimensional modeling of nitrate-N transport in vadose zone: Roles of soil heterogeneity and groundwater flux. Akbariyeh S; Bartelt-Hunt S; Snow D; Li X; Tang Z; Li Y J Contam Hydrol; 2018 Apr; 211():15-25. PubMed ID: 29605158 [TBL] [Abstract][Full Text] [Related]
3. Modeling hydrology, groundwater recharge and non-point nitrate loadings in the Himalayan Upper Yamuna basin. Narula KK; Gosain AK Sci Total Environ; 2013 Dec; 468-469 Suppl():S102-16. PubMed ID: 23452999 [TBL] [Abstract][Full Text] [Related]
4. The long term effect of agricultural, vadose zone and climatic factors on nitrate contamination in the Nebraska's groundwater system. Juntakut P; Snow DD; Haacker EMK; Ray C J Contam Hydrol; 2019 Jan; 220():33-48. PubMed ID: 30502887 [TBL] [Abstract][Full Text] [Related]
5. Examining the impacts of increased corn production on groundwater quality using a coupled modeling system. Garcia V; Cooter E; Crooks J; Hinckley B; Murphy M; Xing X Sci Total Environ; 2017 May; 586():16-24. PubMed ID: 28199875 [TBL] [Abstract][Full Text] [Related]
6. Quantify the effects of groundwater level recovery on groundwater nitrate dynamics through a quasi-3D integrated model for the vadose zone-groundwater coupled system. Zang Y; Hou X; Li Z; Li P; Sun Y; Yu B; Li M Water Res; 2022 Nov; 226():119213. PubMed ID: 36240711 [TBL] [Abstract][Full Text] [Related]
7. Importance of snowmelt on soil nitrate leaching to groundwater - A model study. Beegum S; Malakar A; Ray C; Snow DD J Contam Hydrol; 2023 Apr; 255():104163. PubMed ID: 36848738 [TBL] [Abstract][Full Text] [Related]
8. Investigating effects of climate change, urbanization, and sea level changes on groundwater resources in a coastal aquifer: an integrated assessment. Akbarpour S; Niksokhan MH Environ Monit Assess; 2018 Sep; 190(10):579. PubMed ID: 30196319 [TBL] [Abstract][Full Text] [Related]
9. Simulation of spatial and temporal variation of nitrate leaching in the vadose zone of alluvial regions on a large regional scale. Feng W; Wang S; Tan K; Ma L; Hu C Sci Total Environ; 2024 Mar; 916():170114. PubMed ID: 38232832 [TBL] [Abstract][Full Text] [Related]
10. Can nitrate contaminated groundwater be remediated by optimizing flood irrigation rate with high nitrate water in a desert oasis using the WHCNS model? Liang H; Qi Z; Hu K; Prasher SO; Zhang Y J Environ Manage; 2016 Oct; 181():16-25. PubMed ID: 27294676 [TBL] [Abstract][Full Text] [Related]
11. A review of the impact of climate change on future nitrate concentrations in groundwater of the UK. Stuart ME; Gooddy DC; Bloomfield JP; Williams AT Sci Total Environ; 2011 Jul; 409(15):2859-73. PubMed ID: 21669323 [TBL] [Abstract][Full Text] [Related]
12. Spatio-temporal effect of climate change on water balance and interactions between groundwater and surface water in plains. Guevara-Ochoa C; Medina-Sierra A; Vives L Sci Total Environ; 2020 Jun; 722():137886. PubMed ID: 32208258 [TBL] [Abstract][Full Text] [Related]
14. [Effect of soil texture in unsaturated zone on soil nitrate accumulation and groundwater nitrate contamination in a marginal oasis in the middle of Heihe River basin]. Su YZ; Yang X; Yang R Huan Jing Ke Xue; 2014 Oct; 35(10):3683-91. PubMed ID: 25693370 [TBL] [Abstract][Full Text] [Related]
15. Groundwater nitrate pollution and climate change: learnings from a water balance-based analysis of several aquifers in a western Mediterranean region (Catalonia). Mas-Pla J; Menció A Environ Sci Pollut Res Int; 2019 Jan; 26(3):2184-2202. PubMed ID: 29644604 [TBL] [Abstract][Full Text] [Related]
16. Verifiable metamodels for nitrate losses to drains and groundwater in the Corn Belt, USA. Nolan BT; Malone RW; Gronberg JA; Thorp KR; Ma L Environ Sci Technol; 2012 Jan; 46(2):901-8. PubMed ID: 22129446 [TBL] [Abstract][Full Text] [Related]
17. Assessing the impacts of future climate change on the hydroclimatology of the Gediz Basin in Turkey by using dynamically downscaled CMIP5 projections. Gorguner M; Kavvas ML; Ishida K Sci Total Environ; 2019 Jan; 648():481-499. PubMed ID: 30121528 [TBL] [Abstract][Full Text] [Related]
18. Appraising climate change impacts on future water resources and agricultural productivity in agro-urban river basins. Aliyari F; Bailey RT; Arabi M Sci Total Environ; 2021 Sep; 788():147717. PubMed ID: 34023599 [TBL] [Abstract][Full Text] [Related]
19. Climate change impact assessment on Veneto and Friuli Plain groundwater. Part I: an integrated modeling approach for hazard scenario construction. Baruffi F; Cisotto A; Cimolino A; Ferri M; Monego M; Norbiato D; Cappelletto M; Bisaglia M; Pretner A; Galli A; Scarinci A; Marsala V; Panelli C; Gualdi S; Bucchignani E; Torresan S; Pasini S; Critto A; Marcomini A Sci Total Environ; 2012 Dec; 440():154-66. PubMed ID: 22940008 [TBL] [Abstract][Full Text] [Related]
20. Climate change impact assessment in Veneto and Friuli Plain groundwater. Part II: a spatially resolved regional risk assessment. Pasini S; Torresan S; Rizzi J; Zabeo A; Critto A; Marcomini A Sci Total Environ; 2012 Dec; 440():219-35. PubMed ID: 22863150 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]