These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 31177026)

  • 1. The effects of IBA on the composition of maize root cell walls.
    Šípošová K; Kollárová K; Lišková D; Vivodová Z
    J Plant Physiol; 2019 Aug; 239():10-17. PubMed ID: 31177026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Indole-3-butyric acid induces lateral root formation via peroxisome-derived indole-3-acetic acid and nitric oxide.
    Schlicht M; Ludwig-Müller J; Burbach C; Volkmann D; Baluska F
    New Phytol; 2013 Oct; 200(2):473-482. PubMed ID: 23795714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The changes in the maize root cell walls after exogenous application of auxin in the presence of cadmium.
    Šípošová K; Labancová E; Hačkuličová D; Kollárová K; Vivodová Z
    Environ Sci Pollut Res Int; 2023 Aug; 30(37):87102-87117. PubMed ID: 37418187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles for IBA-derived auxin in plant development.
    Frick EM; Strader LC
    J Exp Bot; 2018 Jan; 69(2):169-177. PubMed ID: 28992091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complete disintegration of the microtubular cytoskeleton precedes its auxin-mediated reconstruction in postmitotic maize root cells.
    Baluska F; Barlow PW; Volkmann D
    Plant Cell Physiol; 1996 Oct; 37(7):1013-21. PubMed ID: 11536780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Indole-3-butyric acid (IBA) production in culture medium by wild strain Azospirillum brasilense.
    Martínez-Morales LJ; Soto-Urzúa L; Baca BE; Sánchez-Ahédo JA
    FEMS Microbiol Lett; 2003 Nov; 228(2):167-73. PubMed ID: 14638420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The rib1 mutant is resistant to indole-3-butyric acid, an endogenous auxin in Arabidopsis.
    Poupart J; Waddell CS
    Plant Physiol; 2000 Dec; 124(4):1739-51. PubMed ID: 11115890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical analysis and immunolocalisation of lignin and suberin in endodermal and hypodermal/rhizodermal cell walls of developing maize (Zea mays L.) primary roots.
    Zeier J; Ruel K; Ryser U; Schreiber L
    Planta; 1999 Jul; 209(1):1-12. PubMed ID: 10467026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of galactoglucomannan oligosaccharides with auxin in mung bean primary root.
    Kollárová K; Vatehová Z; Slováková L; Lisková D
    Plant Physiol Biochem; 2010 Jun; 48(6):401-6. PubMed ID: 20400322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipo-chitooligosaccharides promote lateral root formation and modify auxin homeostasis in Brachypodium distachyon.
    Buendia L; Maillet F; O'Connor D; van de-Kerkhove Q; Danoun S; Gough C; Lefebvre B; Bensmihen S
    New Phytol; 2019 Mar; 221(4):2190-2202. PubMed ID: 30347445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Auxins differentially regulate root system architecture and cell cycle protein levels in maize seedlings.
    Martínez-de la Cruz E; García-Ramírez E; Vázquez-Ramos JM; Reyes de la Cruz H; López-Bucio J
    J Plant Physiol; 2015 Mar; 176():147-56. PubMed ID: 25615607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo cytological and chemical analysis of Casparian strips using stimulated Raman scattering microscopy.
    Man Y; Zhao Y; Ye R; Lin J; Jing Y
    J Plant Physiol; 2018 Jan; 220():136-144. PubMed ID: 29175545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auxin and GA signaling play important roles in the maize response to phosphate deficiency.
    Zhang X; Wang B; Zhao Y; Zhang J; Li Z
    Plant Sci; 2019 Jun; 283():177-188. PubMed ID: 31128687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Yucasin is a potent inhibitor of YUCCA, a key enzyme in auxin biosynthesis.
    Nishimura T; Hayashi K; Suzuki H; Gyohda A; Takaoka C; Sakaguchi Y; Matsumoto S; Kasahara H; Sakai T; Kato J; Kamiya Y; Koshiba T
    Plant J; 2014 Feb; 77(3):352-66. PubMed ID: 24299123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of ethylene on the kinetics of curvature and auxin redistribution in gravistimulated roots of Zea mays.
    Lee JS; Chang W-K ; Evans ML
    Plant Physiol; 1990; 94(4):1770-5. PubMed ID: 11537475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time course and auxin sensitivity of cortical microtubule reorientation in maize roots.
    Blancaflor EB; Hasenstein KH
    Protoplasma; 1995; 185():72-82. PubMed ID: 11541297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of galactoglucomannan oligosaccharides and Cd stress on maize root growth parameters, morphology, and structure.
    Kollárová K; Kamenická V; Vatehová Z; Lišková D
    J Plant Physiol; 2018 Mar; 222():59-66. PubMed ID: 29407550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of cations on hormone transport in primary roots of Zea mays.
    Hasenstein KH; Evans ML
    Plant Physiol; 1988; 86(3):890-4. PubMed ID: 11538240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The rib1 mutant of Arabidopsis has alterations in indole-3-butyric acid transport, hypocotyl elongation, and root architecture.
    Poupart J; Rashotte AM; Muday GK; Waddell CS
    Plant Physiol; 2005 Nov; 139(3):1460-71. PubMed ID: 16258013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The chemical composition of suberin in apoplastic barriers affects radial hydraulic conductivity differently in the roots of rice (Oryza sativa L. cv. IR64) and corn (Zea mays L. cv. Helix).
    Schreiber L; Franke R; Hartmann KD; Ranathunge K; Steudle E
    J Exp Bot; 2005 May; 56(415):1427-36. PubMed ID: 15809280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.