These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 31177072)
1. Development of epi-thermal neutron beam intensity detector with Kashiwagi Y; Aoki K; Tamaki S; Guan X; Kusaka S; Sato F; Murata I Appl Radiat Isot; 2019 Sep; 151():145-149. PubMed ID: 31177072 [TBL] [Abstract][Full Text] [Related]
2. Experimental study on the performance of an epithermal neutron flux monitor for BNCT. Guan X; Manabe M; Tamaki S; Liu S; Sato F; Murata I; Wang T Appl Radiat Isot; 2016 Jul; 113():28-32. PubMed ID: 27110926 [TBL] [Abstract][Full Text] [Related]
3. Performance testing of the neutron flux monitors from 10keV to 1MeV developed for BNCT: A preliminary study. Guan X; Manabe M; Tamaki S; Sato F; Murata I; Wang T Appl Radiat Isot; 2017 Jul; 125():119-123. PubMed ID: 28432929 [TBL] [Abstract][Full Text] [Related]
4. Performance evaluation of a Guan X; Wu H; Bai R; Wu G; Yang W; Guo W; Wang H; Wang Y; Du J; Zhang L; Gu L Appl Radiat Isot; 2024 May; 207():111249. PubMed ID: 38428203 [TBL] [Abstract][Full Text] [Related]
5. Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments. Miller ME; Sztejnberg ML; González SJ; Thorp SI; Longhino JM; Estryk G Med Phys; 2011 Dec; 38(12):6502-12. PubMed ID: 22149833 [TBL] [Abstract][Full Text] [Related]
6. Mock-up experiment at Birmingham University for BNCT project of Osaka University--Neutron flux measurement with gold foil. Tamaki S; Sakai M; Yoshihashi S; Manabe M; Zushi N; Murata I; Hoashi E; Kato I; Kuri S; Oshiro S; Nagasaki M; Horiike H Appl Radiat Isot; 2015 Dec; 106():72-4. PubMed ID: 26275798 [TBL] [Abstract][Full Text] [Related]
7. Design and performance of an epithermal neutron flux detector using Guan X; Gong Y; Murata I; Wang T Appl Radiat Isot; 2021 Oct; 176():109880. PubMed ID: 34365204 [TBL] [Abstract][Full Text] [Related]
8. Prompt gamma and neutron detection in BNCT utilizing a CdTe detector. Winkler A; Koivunoro H; Reijonen V; Auterinen I; Savolainen S Appl Radiat Isot; 2015 Dec; 106():139-44. PubMed ID: 26249745 [TBL] [Abstract][Full Text] [Related]
9. Feasibility study of optical imaging of the boron-dose distribution by a liquid scintillator in a clinical boron neutron capture therapy field. Maeda H; Nohtomi A; Hu N; Kakino R; Akita K; Ono K Med Phys; 2024 Jan; 51(1):509-521. PubMed ID: 37672219 [TBL] [Abstract][Full Text] [Related]
10. The optimization study of Bonner sphere in the epi-thermal neutron irradiation field for BNCT. Ueda H; Tanaka H; Maruhashi A; Ono K; Sakurai Y Appl Radiat Isot; 2011 Dec; 69(12):1657-9. PubMed ID: 21334212 [TBL] [Abstract][Full Text] [Related]
11. Performance measurement of the scintillator with optical fiber detector for boron neutron capture therapy. Komeda M; Kumada H; Ishikawa M; Nakamura T; Yamamoto K; Matsumura A Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S254-7. PubMed ID: 19398347 [TBL] [Abstract][Full Text] [Related]
12. Development and characteristics of the HANARO neutron irradiation facility for applications in the boron neutron capture therapy field. Kim MS; Lee BC; Hwang SY; Kim H; Jun BJ Phys Med Biol; 2007 May; 52(9):2553-66. PubMed ID: 17440252 [TBL] [Abstract][Full Text] [Related]
13. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy. Sakurai Y; Tanaka H; Kondo N; Kinashi Y; Suzuki M; Masunaga S; Ono K; Maruhashi A Med Phys; 2015 Nov; 42(11):6651-7. PubMed ID: 26520755 [TBL] [Abstract][Full Text] [Related]
14. On-line reconstruction of low boron concentrations by in vivo gamma-ray spectroscopy for BNCT. Verbakel WF; Stecher-Rasmussen F Phys Med Biol; 2001 Mar; 46(3):687-701. PubMed ID: 11277217 [TBL] [Abstract][Full Text] [Related]
15. Physics of epi-thermal boron neutron capture therapy (epi-thermal BNCT). Seki R; Wakisaka Y; Morimoto N; Takashina M; Koizumi M; Toki H; Fukuda M Radiol Phys Technol; 2017 Dec; 10(4):387-408. PubMed ID: 29159536 [TBL] [Abstract][Full Text] [Related]
16. PGNAA system preliminary design and measurement of In-Hospital Neutron Irradiator for boron concentration measurement. Zhang Z; Chong Y; Chen X; Jin C; Yang L; Liu T Appl Radiat Isot; 2015 Dec; 106():161-5. PubMed ID: 26242556 [TBL] [Abstract][Full Text] [Related]
17. High-power electron beam tests of a liquid-lithium target and characterization study of (7)Li(p,n) near-threshold neutrons for accelerator-based boron neutron capture therapy. Halfon S; Paul M; Arenshtam A; Berkovits D; Cohen D; Eliyahu I; Kijel D; Mardor I; Silverman I Appl Radiat Isot; 2014 Jun; 88():238-42. PubMed ID: 24387907 [TBL] [Abstract][Full Text] [Related]
18. Increase of the beam intensity for BNCT by changing the core configuration at THOR. Liu HM; Peir JJ; Liu YH; Tsai PE; Jiang SH Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S247-50. PubMed ID: 19394237 [TBL] [Abstract][Full Text] [Related]
19. A feasibility study of the Tehran research reactor as a neutron source for BNCT. Kasesaz Y; Khalafi H; Rahmani F; Ezati A; Keyvani M; Hossnirokh A; Shamami MA; Monshizadeh M Appl Radiat Isot; 2014 Aug; 90():132-7. PubMed ID: 24742535 [TBL] [Abstract][Full Text] [Related]
20. A review of boron neutron capture therapy (BNCT) and the design and dosimetry of a high-intensity, 24 keV, neutron beam for BNCT research. Perks CA; Mill AJ; Constantine G; Harrison KG; Gibson JA Br J Radiol; 1988 Dec; 61(732):1115-26. PubMed ID: 3064858 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]