These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 31177422)
1. Automatic annotation of surgical activities using virtual reality environments. Huaulmé A; Despinoy F; Perez SAH; Harada K; Mitsuishi M; Jannin P Int J Comput Assist Radiol Surg; 2019 Oct; 14(10):1663-1671. PubMed ID: 31177422 [TBL] [Abstract][Full Text] [Related]
2. Automatic data-driven real-time segmentation and recognition of surgical workflow. Dergachyova O; Bouget D; Huaulmé A; Morandi X; Jannin P Int J Comput Assist Radiol Surg; 2016 Jun; 11(6):1081-9. PubMed ID: 26995598 [TBL] [Abstract][Full Text] [Related]
3. LRTD: long-range temporal dependency based active learning for surgical workflow recognition. Shi X; Jin Y; Dou Q; Heng PA Int J Comput Assist Radiol Surg; 2020 Sep; 15(9):1573-1584. PubMed ID: 32588246 [TBL] [Abstract][Full Text] [Related]
4. A Guide to Annotation of Neurosurgical Intraoperative Video for Machine Learning Analysis and Computer Vision. Pangal DJ; Kugener G; Shahrestani S; Attenello F; Zada G; Donoho DA World Neurosurg; 2021 Jun; 150():26-30. PubMed ID: 33722717 [TBL] [Abstract][Full Text] [Related]
5. Assisted phase and step annotation for surgical videos. Lecuyer G; Ragot M; Martin N; Launay L; Jannin P Int J Comput Assist Radiol Surg; 2020 Apr; 15(4):673-680. PubMed ID: 32040704 [TBL] [Abstract][Full Text] [Related]
6. Active learning using deep Bayesian networks for surgical workflow analysis. Bodenstedt S; Rivoir D; Jenke A; Wagner M; Breucha M; Müller-Stich B; Mees ST; Weitz J; Speidel S Int J Comput Assist Radiol Surg; 2019 Jun; 14(6):1079-1087. PubMed ID: 30968355 [TBL] [Abstract][Full Text] [Related]
7. [Intelligent operating room suite : From passive medical devices to the self-thinking cognitive surgical assistant]. Kenngott HG; Wagner M; Preukschas AA; Müller-Stich BP Chirurg; 2016 Dec; 87(12):1033-1038. PubMed ID: 27778059 [TBL] [Abstract][Full Text] [Related]
8. Synthesis and Simulation of Surgical Process Models. Claude G; Gouranton V; Caillaud B; Gibaud B; Arnaldi B; Jannin P Stud Health Technol Inform; 2016; 220():63-70. PubMed ID: 27046555 [TBL] [Abstract][Full Text] [Related]
9. Augmented reality as an aid in maxillofacial surgery: validation of a wearable system allowing maxillary repositioning. Badiali G; Ferrari V; Cutolo F; Freschi C; Caramella D; Bianchi A; Marchetti C J Craniomaxillofac Surg; 2014 Dec; 42(8):1970-6. PubMed ID: 25441867 [TBL] [Abstract][Full Text] [Related]
10. Virtual occlusal definition for orthognathic surgery. Liu XJ; Li QQ; Zhang Z; Li TT; Xie Z; Zhang Y Int J Oral Maxillofac Surg; 2016 Mar; 45(3):406-11. PubMed ID: 26701322 [TBL] [Abstract][Full Text] [Related]
11. Convergent validation and transfer of learning studies of a virtual reality-based pattern cutting simulator. Nemani A; Ahn W; Cooper C; Schwaitzberg S; De S Surg Endosc; 2018 Mar; 32(3):1265-1272. PubMed ID: 28812196 [TBL] [Abstract][Full Text] [Related]
12. Design and Evaluation of Data Annotation Workflows for CAVE-like Virtual Environments. Pick S; Weyers B; Hentschel B; Kuhlen TW IEEE Trans Vis Comput Graph; 2016 Apr; 22(4):1452-61. PubMed ID: 26780799 [TBL] [Abstract][Full Text] [Related]
13. Clinical Evaluation of a 3-D Automatic Annotation Method for Breast Ultrasound Imaging. Jiang WW; Li C; Li AH; Zheng YP Ultrasound Med Biol; 2016 Apr; 42(4):870-81. PubMed ID: 26725169 [TBL] [Abstract][Full Text] [Related]
14. AR in VR: assessing surgical augmented reality visualizations in a steerable virtual reality environment. Hettig J; Engelhardt S; Hansen C; Mistelbauer G Int J Comput Assist Radiol Surg; 2018 Nov; 13(11):1717-1725. PubMed ID: 30043197 [TBL] [Abstract][Full Text] [Related]
15. Neurosurgical Virtual Reality Simulation for Brain Tumor Using High-definition Computer Graphics: A Review of the Literature. Kin T; Nakatomi H; Shono N; Nomura S; Saito T; Oyama H; Saito N Neurol Med Chir (Tokyo); 2017 Oct; 57(10):513-520. PubMed ID: 28637947 [TBL] [Abstract][Full Text] [Related]
16. Using virtual reality simulation to assess competence in video-assisted thoracoscopic surgery (VATS) lobectomy. Jensen K; Bjerrum F; Hansen HJ; Petersen RH; Pedersen JH; Konge L Surg Endosc; 2017 Jun; 31(6):2520-2528. PubMed ID: 27655381 [TBL] [Abstract][Full Text] [Related]
17. Neural digital twins: reconstructing complex medical environments for spatial planning in virtual reality. Kleinbeck C; Zhang H; Killeen BD; Roth D; Unberath M Int J Comput Assist Radiol Surg; 2024 Jul; 19(7):1301-1312. PubMed ID: 38709423 [TBL] [Abstract][Full Text] [Related]
18. Similarity metrics for surgical process models. Neumuth T; Loebe F; Jannin P Artif Intell Med; 2012 Jan; 54(1):15-27. PubMed ID: 22056273 [TBL] [Abstract][Full Text] [Related]
19. CAN VIRTUAL REALITY BE AS GOOD AS OPERATING ROOM TRAINING? EXPERIENCE FROM A RESIDENCY PROGRAM IN GENERAL SURGERY. Gasperin BDM; Zanirati T; Cavazzola LT Arq Bras Cir Dig; 2018 Dec; 31(4):e1397. PubMed ID: 30539972 [TBL] [Abstract][Full Text] [Related]
20. Operating Room Performance Improves after Proficiency-Based Virtual Reality Cataract Surgery Training. Thomsen AS; Bach-Holm D; Kjærbo H; Højgaard-Olsen K; Subhi Y; Saleh GM; Park YS; la Cour M; Konge L Ophthalmology; 2017 Apr; 124(4):524-531. PubMed ID: 28017423 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]