These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 31177427)

  • 1. An Intradermal Model for Yersinia pestis Inoculation.
    Gonzalez RJ
    Methods Mol Biol; 2019; 2010():3-15. PubMed ID: 31177427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Yersinia pestis subverts the dermal neutrophil response in a mouse model of bubonic plague.
    Shannon JG; Hasenkrug AM; Dorward DW; Nair V; Carmody AB; Hinnebusch BJ
    mBio; 2013 Aug; 4(5):e00170-13. PubMed ID: 23982068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antibody Opsonization Enhances Early Interactions between Yersinia pestis and Neutrophils in the Skin and Draining Lymph Node in a Mouse Model of Bubonic Plague.
    Shannon JG; Hinnebusch BJ
    Infect Immun; 2020 Dec; 89(1):. PubMed ID: 33077628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of Models for Bubonic Plague Reveals Unique Pathogen Adaptations to the Dermis.
    Gonzalez RJ; Weening EH; Lane MC; Miller VL
    Infect Immun; 2015 Jul; 83(7):2855-61. PubMed ID: 25939507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yersinia pestis YopJ suppresses tumor necrosis factor alpha induction and contributes to apoptosis of immune cells in the lymph node but is not required for virulence in a rat model of bubonic plague.
    Lemaître N; Sebbane F; Long D; Hinnebusch BJ
    Infect Immun; 2006 Sep; 74(9):5126-31. PubMed ID: 16926404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature-dependence of yadBC phenotypes in Yersinia pestis.
    Uittenbogaard AM; Myers-Morales T; Gorman AA; Welsh E; Wulff C; Hinnebusch BJ; Korhonen TK; Straley SC
    Microbiology (Reading); 2014 Feb; 160(Pt 2):396-405. PubMed ID: 24222617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioluminescent tracing of a Yersinia pestis pCD1
    Zhou Y; Zhou J; Ji Y; Li L; Tan Y; Tian G; Yang R; Wang X
    Microbes Infect; 2018 Mar; 20(3):166-175. PubMed ID: 29180033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Deadly Path: Bacterial Spread During Bubonic Plague.
    Gonzalez RJ; Miller VL
    Trends Microbiol; 2016 Apr; 24(4):239-241. PubMed ID: 26875618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A technique of intradermal injection of Yersinia to study Y. pestis physiopathology.
    Guinet F; Carniel E
    Adv Exp Med Biol; 2003; 529():73-8. PubMed ID: 12756731
    [No Abstract]   [Full Text] [Related]  

  • 10. Dissociation of Tissue Destruction and Bacterial Expansion during Bubonic Plague.
    Guinet F; Avé P; Filali S; Huon C; Savin C; Huerre M; Fiette L; Carniel E
    PLoS Pathog; 2015 Oct; 11(10):e1005222. PubMed ID: 26484539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of disease progression and host response in a rat model of bubonic plague.
    Sebbane F; Gardner D; Long D; Gowen BB; Hinnebusch BJ
    Am J Pathol; 2005 May; 166(5):1427-39. PubMed ID: 15855643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intranasal Inoculation of Mice with Yersinia pestis and Processing of Pulmonary Tissue for Analysis.
    Pechous RD
    Methods Mol Biol; 2019; 2010():17-28. PubMed ID: 31177428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the Yersinia pestis plasminogen activator in the incidence of distinct septicemic and bubonic forms of flea-borne plague.
    Sebbane F; Jarrett CO; Gardner D; Long D; Hinnebusch BJ
    Proc Natl Acad Sci U S A; 2006 Apr; 103(14):5526-30. PubMed ID: 16567636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dermal neutrophil, macrophage and dendritic cell responses to Yersinia pestis transmitted by fleas.
    Shannon JG; Bosio CF; Hinnebusch BJ
    PLoS Pathog; 2015 Mar; 11(3):e1004734. PubMed ID: 25781984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the rat pneumonic plague model: infection kinetics following aerosolization of Yersinia pestis CO92.
    Agar SL; Sha J; Foltz SM; Erova TE; Walberg KG; Baze WB; Suarez G; Peterson JW; Chopra AK
    Microbes Infect; 2009 Feb; 11(2):205-14. PubMed ID: 19073275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissemination of a highly virulent pathogen: tracking the early events that define infection.
    Gonzalez RJ; Lane MC; Wagner NJ; Weening EH; Miller VL
    PLoS Pathog; 2015 Jan; 11(1):e1004587. PubMed ID: 25611317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioluminescence imaging to track bacterial dissemination of Yersinia pestis using different routes of infection in mice.
    Gonzalez RJ; Weening EH; Frothingham R; Sempowski GD; Miller VL
    BMC Microbiol; 2012 Jul; 12():147. PubMed ID: 22827851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental infection of ground squirrels (Citellus pygmaeus Pallas) with Yersinia pestis during hibernation.
    Bizanov G; Dobrokhotova ND
    J Infect; 2007 Feb; 54(2):198-203. PubMed ID: 16580730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Standardized Method for Aerosol Challenge of Rodents with Yersinia pestis for Modeling Primary Pneumonic Plague.
    Anderson PE; Olson RM; Willix JL; Anderson DM
    Methods Mol Biol; 2019; 2010():29-39. PubMed ID: 31177429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shift from primary pneumonic to secondary septicemic plague by decreasing the volume of intranasal challenge with Yersinia pestis in the murine model.
    Olson RM; Anderson DM
    PLoS One; 2019; 14(5):e0217440. PubMed ID: 31121001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.