BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 31178895)

  • 1. Multifaceted Stoichiometry Control of Bacterial Operons Revealed by Deep Proteome Quantification.
    Zhao J; Zhang H; Qin B; Nikolay R; He QY; Spahn CMT; Zhang G
    Front Genet; 2019; 10():473. PubMed ID: 31178895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic arrangement of bacterial operons is constrained by biological pathways encoded in the genome.
    Yin Y; Zhang H; Olman V; Xu Y
    Proc Natl Acad Sci U S A; 2010 Apr; 107(14):6310-5. PubMed ID: 20308592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The operonic location of auto-transcriptional repressors is highly conserved in bacteria.
    Rubinstein ND; Zeevi D; Oren Y; Segal G; Pupko T
    Mol Biol Evol; 2011 Dec; 28(12):3309-18. PubMed ID: 21690561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential translation tunes uneven production of operon-encoded proteins.
    Quax TE; Wolf YI; Koehorst JJ; Wurtzel O; van der Oost R; Ran W; Blombach F; Makarova KS; Brouns SJ; Forster AC; Wagner EG; Sorek R; Koonin EV; van der Oost J
    Cell Rep; 2013 Sep; 4(5):938-44. PubMed ID: 24012761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A predictive biophysical model of translational coupling to coordinate and control protein expression in bacterial operons.
    Tian T; Salis HM
    Nucleic Acids Res; 2015 Aug; 43(14):7137-51. PubMed ID: 26117546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A computational system for identifying operons based on RNA-seq data.
    Tjaden B
    Methods; 2020 Apr; 176():62-70. PubMed ID: 30953757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Internal Transcription Terminators Control Stoichiometry of ABC Transporters in Cellulolytic Clostridia.
    Wu S; You M; Wang N; Ren Z; Xu C
    Microbiol Spectr; 2022 Apr; 10(2):e0165621. PubMed ID: 35286151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unity in organisation and regulation of catabolic operons in Lactobacillus plantarum, Lactococcus lactis and Listeria monocytogenes.
    Andersson U; Molenaar D; Rådström P; de Vos WM
    Syst Appl Microbiol; 2005 Apr; 28(3):187-95. PubMed ID: 15900965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal gene partition into operons correlates with gene functional order.
    Zaslaver A; Mayo A; Ronen M; Alon U
    Phys Biol; 2006 Sep; 3(3):183-9. PubMed ID: 17021382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptional regulation in response to oxygen and nitrate of the operons encoding the [NiFe] hydrogenases 1 and 2 of Escherichia coli.
    Richard DJ; Sawers G; Sargent F; McWalter L; Boxer DH
    Microbiology (Reading); 1999 Oct; 145 ( Pt 10)():2903-12. PubMed ID: 10537212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of sigmaS and the transcriptional activator AppY on induction of the Escherichia coli hya and cbdAB-appA operons in response to carbon and phosphate starvation.
    Atlung T; Knudsen K; Heerfordt L; Brøndsted L
    J Bacteriol; 1997 Apr; 179(7):2141-6. PubMed ID: 9079897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation and organization of the groE and dnaK operons in Eubacteria.
    Segal R; Ron EZ
    FEMS Microbiol Lett; 1996 Apr; 138(1):1-10. PubMed ID: 8674965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Post-transcriptional operons and regulons co-ordinating gene expression.
    Keene JD; Lager PJ
    Chromosome Res; 2005; 13(3):327-37. PubMed ID: 15868425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Post-transcriptional control in the polycistronic operon environment: studies of the atp operon of Escherichia coli.
    McCarthy JE
    Mol Microbiol; 1990 Aug; 4(8):1233-40. PubMed ID: 2149159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-evaluation of E. coli's operon structures via a whole-cell model suggests alternative cellular benefits for low- versus high-expressing operons.
    Sun G; DeFelice MM; Gillies TE; Ahn-Horst TA; Andrews CJ; Krummenacker M; Karp PD; Morrison JH; Covert MW
    Cell Syst; 2024 Mar; 15(3):227-245.e7. PubMed ID: 38417437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. kil-kor regulon of promiscuous plasmid RK2: structure, products, and regulation of two operons that constitute the kilE locus.
    Kornacki JA; Chang CH; Figurski DH
    J Bacteriol; 1993 Aug; 175(16):5078-90. PubMed ID: 8349548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leucine-responsive regulatory protein and deoxyadenosine methylase control the phase variation and expression of the sfa and daa pili operons in Escherichia coli.
    van der Woude MW; Low DA
    Mol Microbiol; 1994 Feb; 11(4):605-18. PubMed ID: 7910935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying translational coupling in E. coli synthetic operons using RBS modulation and fluorescent reporters.
    Levin-Karp A; Barenholz U; Bareia T; Dayagi M; Zelcbuch L; Antonovsky N; Noor E; Milo R
    ACS Synth Biol; 2013 Jun; 2(6):327-36. PubMed ID: 23654261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of mammalian cell entry operons of mycobacteria: in silico analysis and expression profiling.
    Kumar A; Chandolia A; Chaudhry U; Brahmachari V; Bose M
    FEMS Immunol Med Microbiol; 2005 Feb; 43(2):185-95. PubMed ID: 15681149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting Selective RNA Processing and Stabilization Operons in
    Bhaskar Y; Su X; Xu C; Xu J
    Front Microbiol; 2021; 12():673349. PubMed ID: 34177856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.