These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 31179214)

  • 1. Flow-Induced Long-Term Stable Slippery Surfaces.
    Baumli P; Teisala H; Bauer H; Garcia-Gonzalez D; Damle V; Geyer F; D'Acunzi M; Kaltbeitzel A; Butt HJ; Vollmer D
    Adv Sci (Weinh); 2019 Jun; 6(11):1900019. PubMed ID: 31179214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slippery Antifouling Polysiloxane-Polyurea Surfaces with Matrix Self-Healing and Lubricant Self-Replenishing.
    Yu M; Liu M; Fu S
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):32149-32160. PubMed ID: 34212721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Depletion of Lubricant from Nanostructured Oil-Infused Surfaces by Pendant Condensate Droplets.
    Adera S; Alvarenga J; Shneidman AV; Zhang CT; Davitt A; Aizenberg J
    ACS Nano; 2020 Jul; 14(7):8024-8035. PubMed ID: 32490664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct observation of drops on slippery lubricant-infused surfaces.
    Schellenberger F; Xie J; Encinas N; Hardy A; Klapper M; Papadopoulos P; Butt HJ; Vollmer D
    Soft Matter; 2015 Oct; 11(38):7617-26. PubMed ID: 26291621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of biocompatible super stable lubricant-immobilized slippery surfaces by grafting a polydimethylsiloxane brush: excellent boiling water resistance, hot liquid repellency and long-term slippery stability.
    Jing X; Guo Z
    Nanoscale; 2019 May; 11(18):8870-8881. PubMed ID: 31012900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superoleophobic Slippery Lubricant-Infused Surfaces: Combining Two Extremes in the Same Surface.
    Dong Z; Schumann MF; Hokkanen MJ; Chang B; Welle A; Zhou Q; Ras RHA; Xu Z; Wegener M; Levkin PA
    Adv Mater; 2018 Nov; 30(45):e1803890. PubMed ID: 30160319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Droplets on Slippery Lubricant-Infused Porous Surfaces: A Macroscale to Nanoscale Perspective.
    Pham QN; Zhang S; Montazeri K; Won Y
    Langmuir; 2018 Nov; 34(47):14439-14447. PubMed ID: 30372082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical and Three-Dimensional Molecular Dynamics Study of Droplet Wettability and Mobility on Lubricant-Infused Porous Surfaces.
    Zheng SF; Gao YY; Yang LT; Gao SR; Yang YR; Lee DJ; Sunden B; Wang XD
    Langmuir; 2023 Sep; 39(37):13371-13385. PubMed ID: 37675482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Droplet Sorting and Manipulation on Patterned Two-Phase Slippery Lubricant-Infused Surface.
    Paulssen D; Hardt S; Levkin PA
    ACS Appl Mater Interfaces; 2019 May; 11(17):16130-16138. PubMed ID: 30932477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visualization and Experimental Characterization of Wrapping Layer Using Planar Laser-Induced Fluorescence.
    Xu H; Herzog JM; Zhou Y; Bashirzadeh Y; Liu A; Adera S
    ACS Nano; 2024 Feb; 18(5):4068-4076. PubMed ID: 38277478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anti-Icing Mechanism for a Novel Slippery Aluminum Stranded Conductor.
    Xiang H; Yuan Y; Zhu T; Dai X; Zhang C; Gai Y; Liao R
    ACS Appl Mater Interfaces; 2023 Jul; 15(28):34215-34229. PubMed ID: 37413794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping Depletion of Lubricant Films on Antibiofouling Wrinkled Slippery Surfaces.
    Peppou-Chapman S; Neto C
    ACS Appl Mater Interfaces; 2018 Oct; 10(39):33669-33677. PubMed ID: 30168715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating the Effects of Lubricant Infusion Methods on Polymer SLIPS.
    Casey M; Dano F; Busch T; Aboud DGK; Kietzig AM
    ACS Appl Mater Interfaces; 2024 Jul; 16(28):37328-37337. PubMed ID: 38954598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amyloid Proteins Adhesive for Slippery Liquid-Infused Porous Surfaces.
    Feng N; Miao S; Guo X; Yang Z; Yan L; Yang P; Kong J
    Macromol Rapid Commun; 2024 Sep; ():e2400596. PubMed ID: 39319677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disjoining pressure analysis of the lubricant nanofilm stability of liquid-infused surface upon lubricant depletion.
    Emelyanenko KA; Emelyanenko AM; Boinovich LB
    J Colloid Interface Sci; 2022 Jul; 618():121-128. PubMed ID: 35334360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slippery Liquid-Like Solid Surfaces with Promising Antibiofilm Performance under Both Static and Flow Conditions.
    Zhu Y; McHale G; Dawson J; Armstrong S; Wells G; Han R; Liu H; Vollmer W; Stoodley P; Jakubovics N; Chen J
    ACS Appl Mater Interfaces; 2022 Feb; 14(5):6307-6319. PubMed ID: 35099179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. WO
    Fan H; Guo Z
    J Colloid Interface Sci; 2021 Jun; 591():418-428. PubMed ID: 33631529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wetting ridges on slippery liquid-infused porous surfaces.
    Tran HH; Lee D; Riassetto D
    Rep Prog Phys; 2023 May; 86(6):. PubMed ID: 36990071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lubricant-Impregnated Surfaces for Mitigating Asphaltene Deposition.
    Girard HL; Bourrianne P; Yeganeh M; Cohen RE; McKinley GH; Varanasi KK
    ACS Appl Mater Interfaces; 2020 Jun; 12(25):28750-28758. PubMed ID: 32515182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Slightly Depleted Lubricant-Infused Surfaces Are No Longer Slippery.
    Vega-Sánchez C; Neto C
    Langmuir; 2022 Aug; 38(34):10568-10574. PubMed ID: 35972456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.