These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 31179263)

  • 1. Multiscale Modeling of Agglomerated Ceria Nanoparticles: Interface Stability and Oxygen Vacancy Formation.
    Kim BH; Kullgren J; Wolf MJ; Hermansson K; Broqvist P
    Front Chem; 2019; 7():203. PubMed ID: 31179263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen vacancy formation in CeO2 and Ce(1-x)Zr(x)O2 solid solutions: electron localization, electrostatic potential and structural relaxation.
    Wang HF; Li HY; Gong XQ; Guo YL; Lu GZ; Hu P
    Phys Chem Chem Phys; 2012 Dec; 14(48):16521-35. PubMed ID: 23080297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of Atomic Defects on Ceria Surfaces on Chemical Mechanical Polishing of Silica Glass Surfaces.
    Di Biase M; Brugnoli L; Miyatani K; Akaji M; Yoshida T; Urata S; Pedone A
    Langmuir; 2024 Apr; 40(13):6773-6785. PubMed ID: 38507244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and Application of a ReaxFF Reactive Force Field for Cerium Oxide/Water Interfaces.
    Brugnoli L; Menziani MC; Urata S; Pedone A
    J Phys Chem A; 2021 Jul; 125(25):5693-5708. PubMed ID: 34152149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bulk and Surface Properties of Rutile TiO2 from Self-Consistent-Charge Density Functional Tight Binding.
    Fox H; Newman KE; Schneider WF; Corcelli SA
    J Chem Theory Comput; 2010 Feb; 6(2):499-507. PubMed ID: 26617305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modifying ceria (111) with a TiO2 nanocluster for enhanced reactivity.
    Nolan M
    J Chem Phys; 2013 Nov; 139(18):184710. PubMed ID: 24320294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of ReaxFF, DFTB, and DFT for phenolic pyrolysis. 1. Molecular dynamics simulations.
    Qi T; Bauschlicher CW; Lawson JW; Desai TG; Reed EJ
    J Phys Chem A; 2013 Nov; 117(44):11115-25. PubMed ID: 24094313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Doping of ceria surfaces with lanthanum: a DFT + U study.
    Yeriskin I; Nolan M
    J Phys Condens Matter; 2010 Apr; 22(13):135004. PubMed ID: 21389507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Density functional study of oxygen vacancy formation and spin density distribution in octahedral ceria nanoparticles.
    Inerbaev TM; Seal S; Masunov AE
    J Mol Model; 2010 Oct; 16(10):1617-23. PubMed ID: 20195666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling realistic TiO
    Selli D; Fazio G; Di Valentin C
    J Chem Phys; 2017 Oct; 147(16):164701. PubMed ID: 29096504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An efficient way to model complex magnetite: Assessment of SCC-DFTB against DFT.
    Liu H; Seifert G; Di Valentin C
    J Chem Phys; 2019 Mar; 150(9):094703. PubMed ID: 30849917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of ReaxFF, DFTB, and DFT for phenolic pyrolysis. 2. Elementary reaction paths.
    Bauschlicher CW; Qi T; Reed EJ; Lenfant A; Lawson JW; Desai TG
    J Phys Chem A; 2013 Nov; 117(44):11126-35. PubMed ID: 24093151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SCC-DFTB calculation of the static first hyperpolarizability: from gas phase molecules to functionalized surfaces.
    Nénon S; Champagne B
    J Chem Phys; 2013 May; 138(20):204107. PubMed ID: 23742454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the interaction of Mg with the (111) and (110) surfaces of ceria.
    Nolan M; Lykhach Y; Tsud N; Skála T; Staudt T; Prince KC; Matolín V; Libuda J
    Phys Chem Chem Phys; 2012 Jan; 14(3):1293-301. PubMed ID: 22134463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water Multilayers on TiO
    Selli D; Fazio G; Seifert G; Di Valentin C
    J Chem Theory Comput; 2017 Aug; 13(8):3862-3873. PubMed ID: 28679048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid Density Functional Tight Binding (DFTB)─Molecular Mechanics Approach for a Low-Cost Expansion of DFTB Applicability.
    Budiutama G; Li R; Manzhos S; Ihara M
    J Chem Theory Comput; 2023 Aug; 19(15):5189-5198. PubMed ID: 37450317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled Growth of Ceria Nanoarrays on Anatase Titania Powder: A Bottom-up Physical Picture.
    Kim HY; Hybertsen MS; Liu P
    Nano Lett; 2017 Jan; 17(1):348-354. PubMed ID: 28073258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The self-consistent charge density functional tight binding method applied to liquid water and the hydrated excess proton: benchmark simulations.
    Maupin CM; Aradi B; Voth GA
    J Phys Chem B; 2010 May; 114(20):6922-31. PubMed ID: 20426461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling vibrational spectra using the self-consistent charge density-functional tight-binding method. I. Raman spectra.
    Witek HA; Morokuma K; Stradomska A
    J Chem Phys; 2004 Sep; 121(11):5171-8. PubMed ID: 15352809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The surface dependence of CO adsorption on Ceria.
    Nolan M; Watson GW
    J Phys Chem B; 2006 Aug; 110(33):16600-6. PubMed ID: 16913795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.