These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 31179265)

  • 1. Stigmatic Microscopy Enables Low-Cost, 3D, Microscale Particle Imaging Velocimetry in Rehydrating Aqueous Two-Phase Systems.
    Yamanishi C; Oliver CR; Kojima T; Takayama S
    Front Chem; 2019; 7():311. PubMed ID: 31179265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water-in-Water Droplets by Passive Microfluidic Flow Focusing.
    Moon BU; Abbasi N; Jones SG; Hwang DK; Tsai SS
    Anal Chem; 2016 Apr; 88(7):3982-9. PubMed ID: 26959358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic generation of aqueous two-phase-system (ATPS) droplets by oil-droplet choppers.
    Zhou C; Zhu P; Tian Y; Tang X; Shi R; Wang L
    Lab Chip; 2017 Sep; 17(19):3310-3317. PubMed ID: 28861566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous measurement of concentrations and velocities of submicron species using multicolor imaging and microparticle image velocimetry.
    Yang JT; Lai YH; Fang WF; Hsu MH
    Biomicrofluidics; 2010 Mar; 4(1):14109. PubMed ID: 20644678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic generation of aqueous two-phase system (ATPS) droplets by controlled pulsating inlet pressures.
    Moon BU; Jones SG; Hwang DK; Tsai SS
    Lab Chip; 2015 Jun; 15(11):2437-44. PubMed ID: 25906146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aqueous Two-Phase System (ATPS)-Based Polymersomes for Particle Isolation and Separation.
    Seo H; Nam C; Kim E; Son J; Lee H
    ACS Appl Mater Interfaces; 2020 Dec; 12(49):55467-55475. PubMed ID: 33237722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrodynamics of Two Interacting Liquid Droplets of Aqueous Solution inside a Microchannel.
    Pradhan TK; Panigrahi PK
    Langmuir; 2018 Apr; 34(15):4626-4633. PubMed ID: 29561624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of a three-dimensional (3D) particle tracking method to microfluidic particle focusing.
    Winer MH; Ahmadi A; Cheung KC
    Lab Chip; 2014 Apr; 14(8):1443-51. PubMed ID: 24572707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shrinking, growing, and bursting: microfluidic equilibrium control of water-in-water droplets.
    Moon BU; Hwang DK; Tsai SS
    Lab Chip; 2016 Jul; 16(14):2601-8. PubMed ID: 27314278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of partition coefficients of biomolecules in a microfluidic aqueous two phase system platform using fluorescence microscopy.
    Silva DF; Azevedo AM; Fernandes P; Chu V; Conde JP; Aires-Barros MR
    J Chromatogr A; 2017 Mar; 1487():242-247. PubMed ID: 28110948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microneedle-assisted microfluidic flow focusing for versatile and high throughput water-in-water droplet generation.
    Jeyhani M; Gnyawali V; Abbasi N; Hwang DK; Tsai SSH
    J Colloid Interface Sci; 2019 Oct; 553():382-389. PubMed ID: 31226629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Throughput Aqueous Two-Phase System Droplet Generation by Oil-Free Passive Microfluidics.
    Mastiani M; Seo S; Mosavati B; Kim M
    ACS Omega; 2018 Aug; 3(8):9296-9302. PubMed ID: 31459062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new method to prepare microparticles based on an Aqueous Two-Phase system (ATPS), without organic solvents.
    Dumas F; Benoit JP; Saulnier P; Roger E
    J Colloid Interface Sci; 2021 Oct; 599():642-649. PubMed ID: 33979746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 2D Spatially-Resolved Depth-Section Microfluidic Flow Velocimetry Using Dual Beam OCT.
    Hallam JM; Rigas E; Charrett TOH; Tatam RP
    Micromachines (Basel); 2020 Mar; 11(4):. PubMed ID: 32230993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patterning of Metallic Nanoparticles over Solid Surfaces from Sessile Droplets by Thermoplasmonically Controlled Liquid Flow.
    Farzeena C; Varanakkottu SN
    Langmuir; 2022 Feb; 38(6):2003-2013. PubMed ID: 35119875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Particle streak velocimetry-optical coherence tomography: a novel method for multidimensional imaging of microscale fluid flows.
    Zhou KC; Huang BK; Gamm UA; Bhandari V; Khokha MK; Choma MA
    Biomed Opt Express; 2016 Apr; 7(4):1590-603. PubMed ID: 27375926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced mixing of droplets during coalescence on a surface with a wettability gradient.
    Lai YH; Hsu MH; Yang JT
    Lab Chip; 2010 Nov; 10(22):3149-56. PubMed ID: 20922226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic generation of ATPS droplets by transient double emulsion technique.
    Zhou C; Zhu P; Han X; Shi R; Tian Y; Wang L
    Lab Chip; 2021 Jul; 21(14):2684-2690. PubMed ID: 34170274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent progress in the synthesis of all-aqueous two-phase droplets using microfluidic approaches.
    Daradmare S; Lee CS
    Colloids Surf B Biointerfaces; 2022 Nov; 219():112795. PubMed ID: 36049253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating the Effect of Antibody-Antigen Reactions on the Internal Convection in a Sessile Droplet via Microparticle Image Velocimetry and DLVO Analysis.
    Rathaur VS; Kumar S; Panigrahi PK; Panda S
    Langmuir; 2020 Aug; 36(30):8826-8838. PubMed ID: 32628853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.