These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 31179401)

  • 1. Network based model of social media big data predicts contagious disease diffusion.
    Elkin LS; Topal K; Bebek G
    Inf Discov Deliv; 2017; 45(3):110-120. PubMed ID: 31179401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Forecasting influenza-like illness dynamics for military populations using neural networks and social media.
    Volkova S; Ayton E; Porterfield K; Corley CD
    PLoS One; 2017; 12(12):e0188941. PubMed ID: 29244814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long Short-term Memory-Based Prediction of the Spread of Influenza-Like Illness Leveraging Surveillance, Weather, and Twitter Data: Model Development and Validation.
    Athanasiou M; Fragkozidis G; Zarkogianni K; Nikita KS
    J Med Internet Res; 2023 Feb; 25():e42519. PubMed ID: 36745490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A case study of the New York City 2012-2013 influenza season with daily geocoded Twitter data from temporal and spatiotemporal perspectives.
    Nagar R; Yuan Q; Freifeld CC; Santillana M; Nojima A; Chunara R; Brownstein JS
    J Med Internet Res; 2014 Oct; 16(10):e236. PubMed ID: 25331122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The reliability of tweets as a supplementary method of seasonal influenza surveillance.
    Aslam AA; Tsou MH; Spitzberg BH; An L; Gawron JM; Gupta DK; Peddecord KM; Nagel AC; Allen C; Yang JA; Lindsay S
    J Med Internet Res; 2014 Nov; 16(11):e250. PubMed ID: 25406040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in Regional Patterns of Influenza Activity Across Surveillance Systems in the United States: Comparative Evaluation.
    Baltrusaitis K; Vespignani A; Rosenfeld R; Gray J; Raymond D; Santillana M
    JMIR Public Health Surveill; 2019 Sep; 5(4):e13403. PubMed ID: 31579019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review of influenza detection and prediction through social networking sites.
    Alessa A; Faezipour M
    Theor Biol Med Model; 2018 Feb; 15(1):2. PubMed ID: 29386017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining Search, Social Media, and Traditional Data Sources to Improve Influenza Surveillance.
    Santillana M; Nguyen AT; Dredze M; Paul MJ; Nsoesie EO; Brownstein JS
    PLoS Comput Biol; 2015 Oct; 11(10):e1004513. PubMed ID: 26513245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using Google Flu Trends data in forecasting influenza-like-illness related ED visits in Omaha, Nebraska.
    Araz OM; Bentley D; Muelleman RL
    Am J Emerg Med; 2014 Sep; 32(9):1016-23. PubMed ID: 25037278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Social Media Monitoring of the COVID-19 Pandemic and Influenza Epidemic With Adaptation for Informal Language in Arabic Twitter Data: Qualitative Study.
    Alsudias L; Rayson P
    JMIR Med Inform; 2021 Sep; 9(9):e27670. PubMed ID: 34346892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Social media and flu: Media Twitter accounts as agenda setters.
    Yun GW; Morin D; Park S; Joa CY; Labbe B; Lim J; Lee S; Hyun D
    Int J Med Inform; 2016 Jul; 91():67-73. PubMed ID: 27185510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using networks to combine "big data" and traditional surveillance to improve influenza predictions.
    Davidson MW; Haim DA; Radin JM
    Sci Rep; 2015 Jan; 5():8154. PubMed ID: 25634021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating Google, Twitter, and Wikipedia as Tools for Influenza Surveillance Using Bayesian Change Point Analysis: A Comparative Analysis.
    Sharpe JD; Hopkins RS; Cook RL; Striley CW
    JMIR Public Health Surveill; 2016 Oct; 2(2):e161. PubMed ID: 27765731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal and Location Variations, and Link Categories for the Dissemination of COVID-19-Related Information on Twitter During the SARS-CoV-2 Outbreak in Europe: Infoveillance Study.
    Pobiruchin M; Zowalla R; Wiesner M
    J Med Internet Res; 2020 Aug; 22(8):e19629. PubMed ID: 32790641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Joint COVID-19 and influenza-like illness forecasts in the United States using internet search information.
    Ma S; Ning S; Yang S
    Commun Med (Lond); 2023 Mar; 3(1):39. PubMed ID: 36964311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Change in Threads on Twitter Regarding Influenza, Vaccines, and Vaccination During the COVID-19 Pandemic: Artificial Intelligence-Based Infodemiology Study.
    Benis A; Chatsubi A; Levner E; Ashkenazi S
    JMIR Infodemiology; 2021; 1(1):e31983. PubMed ID: 34693212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flu Outbreak Prediction Using Twitter Posts Classification and Linear Regression With Historical Centers for Disease Control and Prevention Reports: Prediction Framework Study.
    Alessa A; Faezipour M
    JMIR Public Health Surveill; 2019 Jun; 5(2):e12383. PubMed ID: 31237567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Twitter improves influenza forecasting.
    Paul MJ; Dredze M; Broniatowski D
    PLoS Curr; 2014 Oct; 6():. PubMed ID: 25642377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regional level influenza study based on Twitter and machine learning method.
    Xue H; Bai Y; Hu H; Liang H
    PLoS One; 2019; 14(4):e0215600. PubMed ID: 31013324
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.