BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 31179445)

  • 1. Effect of Dual Tasking on Vibrotactile Feedback Guided Reaching - a Pilot Study.
    Shah VA; Risi N; Ballardini G; Mrotek LA; Casadio M; Scheidt RA
    Haptics (2018); 2018 Jun; 10893():3-14. PubMed ID: 31179445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extended training improves the accuracy and efficiency of goal-directed reaching guided by supplemental kinesthetic vibrotactile feedback.
    Shah VA; Thomas A; Mrotek LA; Casadio M; Scheidt RA
    Exp Brain Res; 2023 Feb; 241(2):479-493. PubMed ID: 36576510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supplemental vibrotactile feedback of real-time limb position enhances precision of goal-directed reaching.
    Risi N; Shah V; Mrotek LA; Casadio M; Scheidt RA
    J Neurophysiol; 2019 Jul; 122(1):22-38. PubMed ID: 30995149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Use of Vibrotactile Feedback During Dual-Task Standing Balance Conditions in People With Unilateral Vestibular Hypofunction.
    Lin CC; Whitney SL; Loughlin PJ; Furman JM; Redfern MS; Sienko KH; Sparto PJ
    Otol Neurotol; 2018 Jun; 39(5):e349-e356. PubMed ID: 29595580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utility and Usability of Two Forms of Supplemental Vibrotactile Kinesthetic Feedback for Enhancing Movement Accuracy and Efficiency in Goal-Directed Reaching.
    Rayes RK; Mazorow RN; Mrotek LA; Scheidt RA
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visuomotor behaviors and performance in a dual-task paradigm with and without vibrotactile feedback when using a myoelectric controlled hand.
    Raveh E; Friedman J; Portnoy S
    Assist Technol; 2018; 30(5):274-280. PubMed ID: 28628379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of age on postural and cognitive task performance while using vibrotactile feedback.
    Lin CC; Whitney SL; Loughlin PJ; Furman JM; Redfern MS; Sienko KH; Sparto PJ
    J Neurophysiol; 2015 Apr; 113(7):2127-36. PubMed ID: 25589585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Applying Incongruent Visual-Tactile Stimuli during Object Transfer with Vibro-Tactile Feedback.
    Friedman J; Raveh E; Weiss T; Itkin S; Niv D; Hani M; Portnoy S
    J Vis Exp; 2019 May; (147):. PubMed ID: 31180348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Augmenting sensorimotor control using "goal-aware" vibrotactile stimulation during reaching and manipulation behaviors.
    Tzorakoleftherakis E; Murphey TD; Scheidt RA
    Exp Brain Res; 2016 Aug; 234(8):2403-14. PubMed ID: 27074942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Short-Term Exposure to Supplemental Vibrotactile Kinesthetic Feedback on Goal-Directed Movements after Stroke: A Proof of Concept Case Series.
    Ballardini G; Krueger A; Giannoni P; Marinelli L; Casadio M; Scheidt RA
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33671643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supplemental vibrotactile feedback control of stabilization and reaching actions of the arm using limb state and position error encodings.
    Krueger AR; Giannoni P; Shah V; Casadio M; Scheidt RA
    J Neuroeng Rehabil; 2017 May; 14(1):36. PubMed ID: 28464891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of neural structures involved in stuttering using vibrotactile feedback.
    Cheadle O; Sorger C; Howell P
    Brain Lang; 2018; 180-182():50-61. PubMed ID: 29747034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The control of memory-guided reaching movements in peripersonal space.
    Heath M; Westwood DA; Binsted G
    Motor Control; 2004 Jan; 8(1):76-106. PubMed ID: 14973339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the effects of adding vibrotactile feedback to myoelectric prosthesis users on performance and visual attention in a dual-task paradigm.
    Raveh E; Friedman J; Portnoy S
    Clin Rehabil; 2018 Oct; 32(10):1308-1316. PubMed ID: 29756458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Erratum.
    Mult Scler; 2016 Oct; 22(12):NP9-NP11. PubMed ID: 26041800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual cognitive task affects reaching and grasping behavior in subjects with macular disorders.
    Pardhan S; Zuidhoek S
    Invest Ophthalmol Vis Sci; 2013 May; 54(5):3281-8. PubMed ID: 23548620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of long-term balance training with vibrotactile sensory augmentation among community-dwelling healthy older adults: a randomized preliminary study.
    Bao T; Carender WJ; Kinnaird C; Barone VJ; Peethambaran G; Whitney SL; Kabeto M; Seidler RD; Sienko KH
    J Neuroeng Rehabil; 2018 Jan; 15(1):5. PubMed ID: 29347946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influences of Synchronized Metronome Training on Soccer Players' Timing Ability, Performance Accuracy, and Lower-Limb Kinematics.
    Rönnqvist L; McDonald R; Sommer M
    Front Psychol; 2018; 9():2469. PubMed ID: 30581405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of online visual feedback for the control of target-directed and allocentric hand movements.
    Thaler L; Goodale MA
    J Neurophysiol; 2011 Feb; 105(2):846-59. PubMed ID: 21160005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The organization of eye and limb movements during unrestricted reaching to targets in contralateral and ipsilateral visual space.
    Fisk JD; Goodale MA
    Exp Brain Res; 1985; 60(1):159-78. PubMed ID: 4043274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.