These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 31179445)

  • 21. Impairments of reaching movements in patients without proprioception. II. Effects of visual information on accuracy.
    Ghez C; Gordon J; Ghilardi MF
    J Neurophysiol; 1995 Jan; 73(1):361-72. PubMed ID: 7714578
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of kinematic vibrotactile feedback on learning to control a virtual prosthetic arm.
    Hasson CJ; Manczurowsky J
    J Neuroeng Rehabil; 2015 Mar; 12():31. PubMed ID: 25879430
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Going offline: differences in the contributions of movement control processes when reaching in a typical versus novel environment.
    Wijeyaratnam DO; Chua R; Cressman EK
    Exp Brain Res; 2019 Jun; 237(6):1431-1444. PubMed ID: 30895342
    [TBL] [Abstract][Full Text] [Related]  

  • 24. When adaptive control fails: Slow recovery of reduced rapid online control during reaching under reversed vision.
    Kuang S; Gail A
    Vision Res; 2015 May; 110(Pt B):155-65. PubMed ID: 25218421
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interaction of visual and proprioceptive feedback during adaptation of human reaching movements.
    Scheidt RA; Conditt MA; Secco EL; Mussa-Ivaldi FA
    J Neurophysiol; 2005 Jun; 93(6):3200-13. PubMed ID: 15659526
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of fatigue and the absence of visual feedback on shoulder motor control in an healthy population during a reaching task.
    Dube MO; Roy JS
    Gait Posture; 2019 Oct; 74():135-141. PubMed ID: 31522106
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The critical stability task: quantifying sensory-motor control during ongoing movement in nonhuman primates.
    Quick KM; Mischel JL; Loughlin PJ; Batista AP
    J Neurophysiol; 2018 Nov; 120(5):2164-2181. PubMed ID: 29947593
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Odor Modulates Hand Movements in a Reach-to-Grasp Task.
    Yang Y; Wang X
    Front Neurosci; 2020; 14():560. PubMed ID: 32612498
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A wearable vibrotactile device for upper-limb bilateral motion training in stroke rehabilitation: A case study.
    Hung CT; Croft EA; Van der Loos HF
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():3480-3. PubMed ID: 26737042
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid feedback responses are flexibly coordinated across arm muscles to support goal-directed reaching.
    Weiler J; Gribble PL; Pruszynski JA
    J Neurophysiol; 2018 Feb; 119(2):537-547. PubMed ID: 29118199
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of vibrotactile feedback on human learning of arm motions.
    Bark K; Hyman E; Tan F; Cha E; Jax SA; Buxbaum LJ; Kuchenbecker KJ
    IEEE Trans Neural Syst Rehabil Eng; 2015 Jan; 23(1):51-63. PubMed ID: 25486644
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessing vibrotactile feedback strategies by controlling a cursor with unstable dynamics.
    Quick KM; Card NS; Whaite SM; Mischel J; Loughlin P; Batista AP
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2589-92. PubMed ID: 25570520
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of vibrotactile and joint-torque feedback in a myoelectric upper-limb prosthesis.
    Thomas N; Ung G; McGarvey C; Brown JD
    J Neuroeng Rehabil; 2019 Jun; 16(1):70. PubMed ID: 31186005
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reach-relevant somatosensory signals modulate tactile suppression.
    Gertz H; Voudouris D; Fiehler K
    J Neurophysiol; 2017 Jun; 117(6):2262-2268. PubMed ID: 28250147
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Robot-Aided Upper-limb Proprioceptive Training in Three-Dimensional Space.
    Valdes BA; Khoshnam M; Neva JL; Menon C
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():121-126. PubMed ID: 31374617
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact of online visual feedback on motor acquisition and retention when learning to reach in a force field.
    Batcho CS; Gagné M; Bouyer LJ; Roy JS; Mercier C
    Neuroscience; 2016 Nov; 337():267-275. PubMed ID: 27646292
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interpreting ambiguous visual information in motor learning.
    Dionne JK; Henriques DY
    J Vis; 2008 Nov; 8(15):2.1-10. PubMed ID: 19146286
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of bilateral reaching on affected arm motor control in stroke--with and without loading on unaffected arm.
    Chang JJ; Tung WL; Wu WL; Su FC
    Disabil Rehabil; 2006 Dec; 28(24):1507-16. PubMed ID: 17178614
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Implicit motor learning in surgery: implications for multi-tasking.
    Masters RS; Lo CY; Maxwell JP; Patil NG
    Surgery; 2008 Jan; 143(1):140-5. PubMed ID: 18154942
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Vibrotactile grasping force and hand aperture feedback for myoelectric forearm prosthesis users.
    Witteveen HJ; Rietman HS; Veltink PH
    Prosthet Orthot Int; 2015 Jun; 39(3):204-12. PubMed ID: 24567348
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.