These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 31179471)

  • 1. Polyamine-induced, chiral expression from liquid crystalline peptide nanofilaments to long-range ordered nanohelices.
    Wang Y; Feng Y; Yang X; Wang J; Qi W; Yang X; Liu X; Xing Q; Su R; He Z
    Soft Matter; 2019 Jun; 15(24):4818-4826. PubMed ID: 31179471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protamine-induced condensation of peptide nanofilaments into twisted bundles with controlled helical geometry.
    Wang J; Jia J; Wang Y; Xing Q; Peng X; Qi W; Su R; He Z
    J Pept Sci; 2019 Jul; 25(7):e3176. PubMed ID: 31309673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aromatic Motifs Dictate Nanohelix Handedness of Tripeptides.
    Xing Q; Zhang J; Xie Y; Wang Y; Qi W; Rao H; Su R; He Z
    ACS Nano; 2018 Dec; 12(12):12305-12314. PubMed ID: 30452865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-assembly of multifunctional hydrogels with polyoxometalates helical arrays using nematic peptide liquid crystal template.
    Zhang G; Zhang J; Wang Y; Wu Y; Li Q; Liang Y; Qi W; Rao H; Su R; He Z
    J Colloid Interface Sci; 2020 Oct; 578():218-228. PubMed ID: 32531552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyhedral Oligosilsesquioxanes in Functional Chiral Nanoassemblies.
    An S; Hao A; Xing P
    Angew Chem Int Ed Engl; 2021 Apr; 60(18):9902-9912. PubMed ID: 33529451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A combined experimental and computational approach reveals how aromatic peptide amphiphiles self-assemble to form ion-conducting nanohelices.
    Wang Y; An Y; Shmidov Y; Bitton R; Deshmukh SA; Matson JB
    Mater Chem Front; 2020 Oct; 4(10):3022-3031. PubMed ID: 33163198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rational Design of Chiral Nanostructures from Self-Assembly of a Ferrocene-Modified Dipeptide.
    Wang Y; Qi W; Huang R; Yang X; Wang M; Su R; He Z
    J Am Chem Soc; 2015 Jun; 137(24):7869-80. PubMed ID: 26018930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrostatic and aromatic interaction-directed supramolecular self-assembly of a designed Fmoc-tripeptide into helical nanoribbons.
    Xie Y; Wang X; Huang R; Qi W; Wang Y; Su R; He Z
    Langmuir; 2015 Mar; 31(9):2885-94. PubMed ID: 25694059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-Templated, Enantioselective Assembly of an Amyloid-like Dipeptide into Multifunctional Hierarchical Helical Arrays.
    Wang Y; Li Q; Zhang J; Qi W; You S; Su R; He Z
    ACS Nano; 2021 Jun; 15(6):9827-9840. PubMed ID: 34047550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-Assembly of Peptide Chiral Nanostructures with Sequence-Encoded Enantioseparation Capability.
    Fan Y; Xing Q; Zhang J; Wang Y; Liang Y; Qi W; Su R; He Z
    Langmuir; 2020 Sep; 36(35):10361-10370. PubMed ID: 32787008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different nanostructures caused by competition of intra- and inter-β-sheet interactions in hierarchical self-assembly of short peptides.
    Zhou P; Deng L; Wang Y; Lu JR; Xu H
    J Colloid Interface Sci; 2016 Feb; 464():219-28. PubMed ID: 26619132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surfaces Decorated with Enantiomorphically Pure Polymer Nanohelices via Hierarchical Chirality Transfer across Multiple Length Scales.
    Varadharajan D; Nayani K; Zippel C; Spuling E; Cheng KC; Sarangarajan S; Roh S; Kim J; Trouillet V; Bräse S; Abbott NL; Lahann J
    Adv Mater; 2022 Mar; 34(9):e2108386. PubMed ID: 34918392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of peptide hydrogel formation and stability via heating treatment.
    Li Q; Zhang G; Wu Y; Wang Y; Liang Y; Yang X; Qi W; Su R; He Z
    J Colloid Interface Sci; 2021 Feb; 583():234-242. PubMed ID: 33002695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chirality Induction to CdSe Nanocrystals Self-Organized on Silica Nanohelices: Tuning Chiroptical Properties.
    Liu P; Battie Y; Decossas M; Tan S; Pouget E; Okazaki Y; Sagawa T; Oda R
    ACS Nano; 2021 Oct; 15(10):16411-16421. PubMed ID: 34617734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-range ordering of highly charged self-assembled nanofilaments.
    Palmer LC; Leung CY; Kewalramani S; Kumthekar R; Newcomb CJ; Olvera de la Cruz M; Bedzyk MJ; Stupp SI
    J Am Chem Soc; 2014 Oct; 136(41):14377-80. PubMed ID: 25255327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optically Active Polyoxometalate-Based Silica Nanohelices: Induced Chirality from Inorganic Nanohelices to Achiral POM Clusters.
    Attoui M; Pouget E; Oda R; Talaga D; Le Bourdon G; Buffeteau T; Nlate S
    Chemistry; 2018 Aug; 24(44):11344-11353. PubMed ID: 29806224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconfigurable Chiral Self-Assembly of Peptides through Control of Terminal Charges.
    Xie Y; Wang Y; Qi W; Huang R; Su R; He Z
    Small; 2017 Aug; 13(30):. PubMed ID: 28639349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchical Self-Assembly of a Porphyrin into Chiral Macroscopic Flowers with Superhydrophobic and Enantioselective Property.
    Jiang H; Zhang L; Chen J; Liu M
    ACS Nano; 2017 Dec; 11(12):12453-12460. PubMed ID: 29165987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of ferrocene-dipeptide bioorganometallic conjugates to induce chirality-organized structures.
    Moriuchi T; Hirao T
    Acc Chem Res; 2010 Jul; 43(7):1040-51. PubMed ID: 20377253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of impeller-like helical DNA-silica complexes by polyamines induced chiral packing.
    Liu B; Han L; Che S
    Interface Focus; 2012 Oct; 2(5):608-16. PubMed ID: 24098845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.