BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 31179473)

  • 1. Wet spinning and radial self-assembly of a carbohydrate low molecular weight gelator into well organized hydrogel filaments.
    Chalard A; Joseph P; Souleille S; Lonetti B; Saffon-Merceron N; Loubinoux I; Vaysse L; Malaquin L; Fitremann J
    Nanoscale; 2019 Aug; 11(32):15043-15056. PubMed ID: 31179473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wet spinning of a library of carbohydrate low molecular weight gels.
    Bordignon D; Lonetti B; Coudret C; Roblin P; Joseph P; Malaquin L; Chalard A; Fitremann J
    J Colloid Interface Sci; 2021 Dec; 603():333-343. PubMed ID: 34197983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simple Synthetic Molecular Hydrogels from Self-Assembling Alkylgalactonamides as Scaffold for 3D Neuronal Cell Growth.
    Chalard A; Vaysse L; Joseph P; Malaquin L; Souleille S; Lonetti B; Sol JC; Loubinoux I; Fitremann J
    ACS Appl Mater Interfaces; 2018 May; 10(20):17004-17017. PubMed ID: 29757611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-Assembly of an Amino Acid Derivative into an Antimicrobial Hydrogel Biomaterial.
    Garcia AM; Lavendomme R; Kralj S; Kurbasic M; Bellotto O; Cringoli MC; Semeraro S; Bandiera A; De Zorzi R; Marchesan S
    Chemistry; 2020 Feb; 26(8):1880-1886. PubMed ID: 31868256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D printing of biocompatible low molecular weight gels: Imbricated structures with sacrificial and persistent N-alkyl-d-galactonamides.
    Andriamiseza F; Bordignon D; Payré B; Vaysse L; Fitremann J
    J Colloid Interface Sci; 2022 Jul; 617():156-170. PubMed ID: 35276518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biocompatible Glycine-Assisted Catalysis of the Sol-Gel Process: Development of Cell-Embedded Hydrogels.
    Valot L; Maumus M; Montheil T; Martinez J; Noël D; Mehdi A; Subra G
    Chempluschem; 2019 Nov; 84(11):1720-1729. PubMed ID: 31943873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH-Responsive Biocompatible Supramolecular Peptide Hydrogel.
    Ghosh G; Barman R; Sarkar J; Ghosh S
    J Phys Chem B; 2019 Jul; 123(27):5909-5915. PubMed ID: 31246033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multidomain hybrid hydrogels: spatially resolved photopatterned synthetic nanomaterials combining polymer and low-molecular-weight gelators.
    Cornwell DJ; Okesola BO; Smith DK
    Angew Chem Int Ed Engl; 2014 Nov; 53(46):12461-5. PubMed ID: 25146876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenylboronic Acid Appended Pyrene-Based Low-Molecular-Weight Injectable Hydrogel: Glucose-Stimulated Insulin Release.
    Mandal D; Mandal SK; Ghosh M; Das PK
    Chemistry; 2015 Aug; 21(34):12042-52. PubMed ID: 26184777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A shear-induced network of aligned wormlike micelles in a sugar-based molecular gel. From gelation to biocompatibility assays.
    Fitremann J; Lonetti B; Fratini E; Fabing I; Payré B; Boulé C; Loubinoux I; Vaysse L; Oriol L
    J Colloid Interface Sci; 2017 Oct; 504():721-730. PubMed ID: 28622565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The solvent-gelator interaction as the origin of different diffusivity behavior of diols in gels formed with sugar-based low-molecular-mass gelator.
    Kowalczuk J; Bielejewski M; Lapiński A; Luboradzki R; Tritt-Goc J
    J Phys Chem B; 2014 Apr; 118(14):4005-15. PubMed ID: 24635027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile strategy to construct a self-healing and biocompatible cellulose nanocomposite hydrogel via reversible acylhydrazone.
    Xiao G; Wang Y; Zhang H; Chen L; Fu S
    Carbohydr Polym; 2019 Aug; 218():68-77. PubMed ID: 31221345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short Oligopeptides for Biocompatible and Biodegradable Supramolecular Hydrogels.
    Restu WK; Nishida Y; Yamamoto S; Ishii J; Maruyama T
    Langmuir; 2018 Jul; 34(27):8065-8074. PubMed ID: 29897242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low molecular weight hydrogels derived from urea based-bolaamphiphiles as new injectable biomaterials.
    Ramin MA; Latxague L; Sindhu KR; Chassande O; Barthélémy P
    Biomaterials; 2017 Nov; 145():72-80. PubMed ID: 28850933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drying Affects the Fiber Network in Low Molecular Weight Hydrogels.
    Mears LLE; Draper ER; Castilla AM; Su H; Zhuola ; Dietrich B; Nolan MC; Smith GN; Doutch J; Rogers S; Akhtar R; Cui H; Adams DJ
    Biomacromolecules; 2017 Nov; 18(11):3531-3540. PubMed ID: 28631478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A saccharide-based supramolecular hydrogel for cell culture.
    Wang W; Wang H; Ren C; Wang J; Tan M; Shen J; Yang Z; Wang PG; Wang L
    Carbohydr Res; 2011 Jun; 346(8):1013-7. PubMed ID: 21482421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-crosslinking effect of chitosan and gelatin on alginate based hydrogels: Injectable in situ forming scaffolds.
    Naghizadeh Z; Karkhaneh A; Khojasteh A
    Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():256-264. PubMed ID: 29752097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Entrapment and release of quinoline derivatives using a hydrogel of a low molecular weight gelator.
    Friggeri A; Feringa BL; van Esch J
    J Control Release; 2004 Jun; 97(2):241-8. PubMed ID: 15196751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular hydrogels from bolaform amino acid derivatives: a structure-properties study based on the thermodynamics of gel solubilization.
    Nebot VJ; Armengol J; Smets J; Prieto SF; Escuder B; Miravet JF
    Chemistry; 2012 Mar; 18(13):4063-72. PubMed ID: 22354848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytocompatibility of self-assembled beta-hairpin peptide hydrogel surfaces.
    Kretsinger JK; Haines LA; Ozbas B; Pochan DJ; Schneider JP
    Biomaterials; 2005 Sep; 26(25):5177-86. PubMed ID: 15792545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.