These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 31179473)

  • 41. Self-Propelling Hybrid Gels Incorporating an Active Self-Assembled, Low-Molecular-Weight Gelator.
    Piras CC; Smith DK
    Chemistry; 2021 Oct; 27(58):14527-14534. PubMed ID: 34339068
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Photopolymerization of cell-encapsulating hydrogels: crosslinking efficiency versus cytotoxicity.
    Mironi-Harpaz I; Wang DY; Venkatraman S; Seliktar D
    Acta Biomater; 2012 May; 8(5):1838-48. PubMed ID: 22285429
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Thermal properties of the gel made by low molecular weight gelator 1,2-O-(1-ethylpropylidene)-alpha-D-glucofuranose with toluene and molecular dynamics of solvent.
    Tritt-Goc J; Bielejewski M; Luboradzki R; Lapiński A
    Langmuir; 2008 Jan; 24(2):534-40. PubMed ID: 18072792
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biomaterials from ultrasonication-induced silk fibroin-hyaluronic acid hydrogels.
    Hu X; Lu Q; Sun L; Cebe P; Wang X; Zhang X; Kaplan DL
    Biomacromolecules; 2010 Nov; 11(11):3178-88. PubMed ID: 20942397
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Self-assembly behavior of the keratose proteins extracted from oxidized Ovis aries wool fibers.
    Pakkaner E; Yalçın D; Uysal B; Top A
    Int J Biol Macromol; 2019 Mar; 125():1008-1015. PubMed ID: 30572050
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In situ forming chitosan hydrogels prepared via ionic/covalent co-cross-linking.
    Moura MJ; Faneca H; Lima MP; Gil MH; Figueiredo MM
    Biomacromolecules; 2011 Sep; 12(9):3275-84. PubMed ID: 21774479
    [TBL] [Abstract][Full Text] [Related]  

  • 47. New Synthesis Route of Hydrogel through A Bioinspired Supramolecular Approach: Gelation, Binding Interaction, and in Vitro Dressing.
    Cheng C; Tang MC; Wu CS; Simon T; Ko FH
    ACS Appl Mater Interfaces; 2015 Sep; 7(34):19306-15. PubMed ID: 26271338
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Formation of supramolecular hydrogels with controlled microstructures and stability via molecular assembling in a two-component system.
    Wu J; Tang L; Chen K; Yan L; Li F; Wang Y
    J Colloid Interface Sci; 2007 Mar; 307(1):280-7. PubMed ID: 17141263
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Investigation on the assembled structure-property correlation of supramolecular hydrogel formed from low-molecular-weight gelator.
    Wang Y; Tang L; Yu J
    J Colloid Interface Sci; 2008 Mar; 319(1):357-64. PubMed ID: 18082174
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Time-dependent gel to gel transformation of a peptide based supramolecular gelator.
    Baral A; Basak S; Basu K; Dehsorkhi A; Hamley IW; Banerjee A
    Soft Matter; 2015 Jun; 11(24):4944-51. PubMed ID: 26016677
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Stoichiometric sensing to opt between gelation and crystallization.
    Vidyasagar A; Sureshan KM
    Angew Chem Int Ed Engl; 2015 Oct; 54(41):12078-82. PubMed ID: 26329982
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Electrically conductive gel/fibers composite scaffold with graded properties.
    Khorshidi S; Karkhaneh A
    Mater Sci Eng C Mater Biol Appl; 2017 May; 74():238-245. PubMed ID: 28254290
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A temperature-responsive supramolecular hydrogel: preparation, gel-gel transition and molecular aggregation.
    Wang L; Shi X; Wang J
    Soft Matter; 2018 Apr; 14(16):3090-3095. PubMed ID: 29611598
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Strong and Rapidly Self-Healing Hydrogels: Potential Hemostatic Materials.
    Huang W; Wang Y; Chen Y; Zhao Y; Zhang Q; Zheng X; Chen L; Zhang L
    Adv Healthc Mater; 2016 Nov; 5(21):2813-2822. PubMed ID: 27717239
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Self-Assembling Supramolecular Hybrid Hydrogel Beads.
    Piras CC; Slavik P; Smith DK
    Angew Chem Int Ed Engl; 2020 Jan; 59(2):853-859. PubMed ID: 31697017
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Chirality effects at each amino acid position on tripeptide self-assembly into hydrogel biomaterials.
    Marchesan S; Easton CD; Styan KE; Waddington LJ; Kushkaki F; Goodall L; McLean KM; Forsythe JS; Hartley PG
    Nanoscale; 2014 May; 6(10):5172-80. PubMed ID: 24700146
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Chemoenzymatic synthesis of sugar-containing biocompatible hydrogels: crosslinked poly(beta-methylglucoside acrylate) and poly(beta-methylglucoside methacrylate).
    Park DW; Haam S; Lee TG; Kim HS; Kim WS
    J Biomed Mater Res A; 2004 Dec; 71(3):497-507. PubMed ID: 15386484
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biocompatible and mechanically robust nanocomposite hydrogels for potential applications in tissue engineering.
    Kouser R; Vashist A; Zafaryab M; Rizvi MA; Ahmad S
    Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():168-179. PubMed ID: 29519426
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Modified Dioscorea hispida starch-based hydrogels and their in-vitro cytotoxicity study on small intestine cell line (FHS-74 Int).
    Ashri A; Amalina N; Kamil A; Fazry S; Sairi MF; Nazar MF; Lazim AM
    Int J Biol Macromol; 2018 Feb; 107(Pt B):2412-2421. PubMed ID: 29056465
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Strength and Water Interactions of Cellulose I Filaments Wet-Spun from Cellulose Nanofibril Hydrogels.
    Lundahl MJ; Cunha AG; Rojo E; Papageorgiou AC; Rautkari L; Arboleda JC; Rojas OJ
    Sci Rep; 2016 Jul; 6():30695. PubMed ID: 27465828
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.