These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 31179477)
21. Photoelectrochemical CO Chu S; Ou P; Ghamari P; Vanka S; Zhou B; Shih I; Song J; Mi Z J Am Chem Soc; 2018 Jun; 140(25):7869-7877. PubMed ID: 29905471 [TBL] [Abstract][Full Text] [Related]
22. Directed Assembly of Nanoparticle Catalysts on Nanowire Photoelectrodes for Photoelectrochemical CO2 Reduction. Kong Q; Kim D; Liu C; Yu Y; Su Y; Li Y; Yang P Nano Lett; 2016 Sep; 16(9):5675-80. PubMed ID: 27494433 [TBL] [Abstract][Full Text] [Related]
23. Cooperative Syngas Production and C-N Bond Formation in One Photoredox Cycle. Han C; Li YH; Li JY; Qi MY; Tang ZR; Xu YJ Angew Chem Int Ed Engl; 2021 Mar; 60(14):7962-7970. PubMed ID: 33372353 [TBL] [Abstract][Full Text] [Related]
24. Achieving Selective and Efficient Electrocatalytic Activity for CO2 Reduction Using Immobilized Silver Nanoparticles. Kim C; Jeon HS; Eom T; Jee MS; Kim H; Friend CM; Min BK; Hwang YJ J Am Chem Soc; 2015 Nov; 137(43):13844-50. PubMed ID: 26447349 [TBL] [Abstract][Full Text] [Related]
25. Photoelectrocatalytic reduction of CO Lian Z; Pan D; Wang W; Zhang D; Li G; Li H J Environ Sci (China); 2017 Oct; 60():108-113. PubMed ID: 29031439 [TBL] [Abstract][Full Text] [Related]
26. Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles. Mistry H; Reske R; Zeng Z; Zhao ZJ; Greeley J; Strasser P; Cuenya BR J Am Chem Soc; 2014 Nov; 136(47):16473-6. PubMed ID: 25325519 [TBL] [Abstract][Full Text] [Related]
27. Ligament size-dependent electrocatalytic activity of nanoporous Ag network for CO Yang W; Ma W; Zhang Z; Zhao C Faraday Discuss; 2018 Oct; 210(0):289-299. PubMed ID: 29974912 [TBL] [Abstract][Full Text] [Related]
28. A Ni-O-Ag photothermal catalyst enables 103-m Li Y; Meng F; Wu Q; Yuan D; Wang H; Liu B; Wang J; San X; Gu L; Meng Q Sci Adv; 2024 May; 10(20):eadn5098. PubMed ID: 38758784 [TBL] [Abstract][Full Text] [Related]
29. Rational Design of FeNi Bimetal Modified Covalent Organic Frameworks for Photoconversion of Anthropogenic CO Han B; Ou X; Zhong Z; Liang S; Deng H; Lin Z Small; 2020 Sep; 16(38):e2002985. PubMed ID: 32812346 [TBL] [Abstract][Full Text] [Related]
30. Electrosynthesis of a Defective Indium Selenide with 3D Structure on a Substrate for Tunable CO Yang D; Zhu Q; Sun X; Chen C; Guo W; Yang G; Han B Angew Chem Int Ed Engl; 2020 Feb; 59(6):2354-2359. PubMed ID: 31797503 [TBL] [Abstract][Full Text] [Related]
31. Temperature-Controlled Syngas Production via Electrochemical CO Hossain MN; Khakpour R; Busch M; Suominen M; Laasonen K; Kallio T ACS Appl Energy Mater; 2023 Jan; 6(1):267-277. PubMed ID: 36644114 [TBL] [Abstract][Full Text] [Related]
32. Solar-Driven Syngas Production Using Al-Doped ZnTe Nanorod Photocathodes. Jang YJ; Lee C; Moon YH; Choe S Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591437 [TBL] [Abstract][Full Text] [Related]
33. An Exceptionally Efficient Co-Co Xu Y; Mo J; Fu ZC; Liu S; Yang Z; Fu WF Chemistry; 2018 Jun; 24(34):8596-8602. PubMed ID: 29718568 [TBL] [Abstract][Full Text] [Related]
34. Annealing of Au, Ag and Au-Ag alloy nanoparticle arrays on GaAs (100) and (111)B. Whiticar AM; Mårtensson EK; Nygård J; Dick KA; Bolinsson J Nanotechnology; 2017 May; 28(20):205702. PubMed ID: 28445163 [TBL] [Abstract][Full Text] [Related]
35. A doping technique that suppresses undesirable H2 evolution derived from overall water splitting in the highly selective photocatalytic conversion of CO2 in and by water. Teramura K; Wang Z; Hosokawa S; Sakata Y; Tanaka T Chemistry; 2014 Aug; 20(32):9906-9. PubMed ID: 25044046 [TBL] [Abstract][Full Text] [Related]
36. Evidence of highly active cobalt oxide catalyst for the Fischer-Tropsch synthesis and CO2 hydrogenation. Melaet G; Ralston WT; Li CS; Alayoglu S; An K; Musselwhite N; Kalkan B; Somorjai GA J Am Chem Soc; 2014 Feb; 136(6):2260-3. PubMed ID: 24460136 [TBL] [Abstract][Full Text] [Related]
37. Ag Nanoparticle-Modified Polyoxometalate-Based Metal-Organic Framework for Enhanced CO He YO; Fu YM; Meng X; Sun HX; Yang RG; Qu JX; Su ZM; Wang HN Inorg Chem; 2022 Jul; 61(29):11359-11365. PubMed ID: 35819880 [TBL] [Abstract][Full Text] [Related]
38. POM-Incorporated CoO Nanowires for Enhanced Photocatalytic Syngas Production from CO Yang H; Yang D; Wang X Angew Chem Int Ed Engl; 2020 Sep; 59(36):15527-15531. PubMed ID: 32378278 [TBL] [Abstract][Full Text] [Related]
39. A Surfactant-Encapsulating Polyoxometalate Nanowire Assembly as a New Carrier for Nanoscale Noble-Metal Catalysts. Zhou WZ; Feng XJ; Tan HQ; Shi HF; Wang YH; Gao S; Li YG Chem Asian J; 2016 Nov; 11(21):3107-3112. PubMed ID: 27704699 [TBL] [Abstract][Full Text] [Related]
40. Multifunctional Ag nanoparticle decorated Si nanowires for sensing, photocatalysis and light emission applications. Ghosh R; Ghosh J; Das R; Mawlong LPL; Paul KK; Giri PK J Colloid Interface Sci; 2018 Dec; 532():464-473. PubMed ID: 30099309 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]