These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 31179874)
1. Detecting automation failures in a simulated supervisory control environment. Foroughi CK; Sibley C; Brown NL; Rovira E; Pak R; Coyne JT Ergonomics; 2019 Sep; 62(9):1150-1161. PubMed ID: 31179874 [TBL] [Abstract][Full Text] [Related]
2. Automation reliability in unmanned aerial vehicle control: a reliance-compliance model of automation dependence in high workload. Dixon SR; Wickens CD Hum Factors; 2006; 48(3):474-86. PubMed ID: 17063963 [TBL] [Abstract][Full Text] [Related]
3. Automation trust and attention allocation in multitasking workspace. Karpinsky ND; Chancey ET; Palmer DB; Yamani Y Appl Ergon; 2018 Jul; 70():194-201. PubMed ID: 29866311 [TBL] [Abstract][Full Text] [Related]
4. What the eyes reveal: Investigating the detection of automation failures. Bruder C; Hasse C Appl Ergon; 2020 Jan; 82():102967. PubMed ID: 31586821 [TBL] [Abstract][Full Text] [Related]
5. Design and test of a situation-augmented display for an unmanned aerial vehicle monitoring task. Lu JL; Horng RY; Chao CJ Percept Mot Skills; 2013 Aug; 117(1):1187-207. PubMed ID: 24422345 [TBL] [Abstract][Full Text] [Related]
6. Effects of adaptive task allocation on monitoring of automated systems. Parasuraman R; Mouloua M; Molloy R Hum Factors; 1996 Dec; 38(4):665-79. PubMed ID: 11536753 [TBL] [Abstract][Full Text] [Related]
7. Mission control of multiple unmanned aerial vehicles: a workload analysis. Dixon SR; Wickens CD; Chang D Hum Factors; 2005; 47(3):479-87. PubMed ID: 16435690 [TBL] [Abstract][Full Text] [Related]
8. Team performance in networked supervisory control of unmanned air vehicles: effects of automation, working memory, and communication content. McKendrick R; Shaw T; de Visser E; Saqer H; Kidwell B; Parasuraman R Hum Factors; 2014 May; 56(3):463-75. PubMed ID: 24930169 [TBL] [Abstract][Full Text] [Related]
9. Human-automation interaction for multiple robot control: the effect of varying automation assistance and individual differences on operator performance. Wright JL; Chen JYC; Barnes MJ Ergonomics; 2018 Aug; 61(8):1033-1045. PubMed ID: 29451105 [TBL] [Abstract][Full Text] [Related]
10. Near-Perfect Automation: Investigating Performance, Trust, and Visual Attention Allocation. Foroughi CK; Devlin S; Pak R; Brown NL; Sibley C; Coyne JT Hum Factors; 2023 Jun; 65(4):546-561. PubMed ID: 34348511 [TBL] [Abstract][Full Text] [Related]
11. On the independence of compliance and reliance: are automation false alarms worse than misses? Dixon SR; Wickens CD; McCarley JS Hum Factors; 2007 Aug; 49(4):564-72. PubMed ID: 17702209 [TBL] [Abstract][Full Text] [Related]
12. Automation transparency: implications of uncertainty communication for human-automation interaction and interfaces. Kunze A; Summerskill SJ; Marshall R; Filtness AJ Ergonomics; 2019 Mar; 62(3):345-360. PubMed ID: 30501566 [TBL] [Abstract][Full Text] [Related]
13. Overload and automation-dependence in a multi-UAS simulation: Task demand and individual difference factors. Lin J; Matthews G; Wohleber RW; Funke GJ; Calhoun GL; Ruff HA; Szalma J; Chiu P J Exp Psychol Appl; 2020 Jun; 26(2):218-235. PubMed ID: 31621357 [TBL] [Abstract][Full Text] [Related]
14. System reliability, performance and trust in adaptable automation. Chavaillaz A; Wastell D; Sauer J Appl Ergon; 2016 Jan; 52():333-42. PubMed ID: 26360226 [TBL] [Abstract][Full Text] [Related]
15. Designing for flexible interaction between humans and automation: delegation interfaces for supervisory control. Miller CA; Parasuraman R Hum Factors; 2007 Feb; 49(1):57-75. PubMed ID: 17315844 [TBL] [Abstract][Full Text] [Related]
16. Automation-induced monitoring inefficiency: role of display location. Singh IL; Molloy R; Parasuraman R Int J Hum Comput Stud; 1997 Jan; 46(1):17-30. PubMed ID: 11539855 [TBL] [Abstract][Full Text] [Related]
17. Detecting a Single Automation Failure: The Impact of Expected (But Not Experienced) Automation Reliability. Bowden VK; Griffiths N; Strickland L; Loft S Hum Factors; 2023 Jun; 65(4):533-545. PubMed ID: 34375538 [TBL] [Abstract][Full Text] [Related]
18. Introduction matters: Manipulating trust in automation and reliance in automated driving. Körber M; Baseler E; Bengler K Appl Ergon; 2018 Jan; 66():18-31. PubMed ID: 28958427 [TBL] [Abstract][Full Text] [Related]
19. Return-to-Manual Performance can be Predicted Before Automation Fails. Griffiths N; Bowden V; Wee S; Loft S Hum Factors; 2024 May; 66(5):1333-1349. PubMed ID: 36538745 [TBL] [Abstract][Full Text] [Related]
20. Petri net-based modelling of human-automation conflicts in aviation. Pizziol S; Tessier C; Dehais F Ergonomics; 2014; 57(3):319-31. PubMed ID: 24444329 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]