These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 31180199)
1. Vanadium Organometallics as an Interfacial Stabilizer for Ca Wang X; Bai Y; Wu F; Wu C ACS Appl Mater Interfaces; 2019 Jul; 11(26):23291-23302. PubMed ID: 31180199 [TBL] [Abstract][Full Text] [Related]
2. Mesoporous Hybrids of Reduced Graphene Oxide and Vanadium Pentoxide for Enhanced Performance in Lithium-Ion Batteries and Electrochemical Capacitors. Pandey GP; Liu T; Brown E; Yang Y; Li Y; Sun XS; Fang Y; Li J ACS Appl Mater Interfaces; 2016 Apr; 8(14):9200-10. PubMed ID: 27010675 [TBL] [Abstract][Full Text] [Related]
3. Binder-Free V Diem AM; Fenk B; Bill J; Burghard Z Nanomaterials (Basel); 2020 Jan; 10(2):. PubMed ID: 32019197 [TBL] [Abstract][Full Text] [Related]
4. A Safe High-Performance All-Solid-State Lithium-Vanadium Battery with a Freestanding V Zhang Y; Lai J; Gong Y; Hu Y; Liu J; Sun C; Wang ZL ACS Appl Mater Interfaces; 2016 Dec; 8(50):34309-34316. PubMed ID: 27998115 [TBL] [Abstract][Full Text] [Related]
5. Heterogeneous TiO Kurttepeli M; Deng S; Mattelaer F; Cott DJ; Vereecken P; Dendooven J; Detavernier C; Bals S ACS Appl Mater Interfaces; 2017 Mar; 9(9):8055-8064. PubMed ID: 28199079 [TBL] [Abstract][Full Text] [Related]
6. Vanadium pentoxide interfacial layer enables high performance all-solid-state thin film batteries. Ma S; Wei K; Zhao Y; Qiu J; Xu R; Li H; Zhang H; Cui Y RSC Adv; 2024 May; 14(22):15261-15269. PubMed ID: 38741967 [TBL] [Abstract][Full Text] [Related]
7. Hydrated vanadium pentoxide/reduced graphene oxide composite cathode material for high-rate lithium ion batteries. Zhang Y; Yuan X; Lu T; Gong Z; Pan L; Guo S J Colloid Interface Sci; 2021 Mar; 585():347-354. PubMed ID: 33302051 [TBL] [Abstract][Full Text] [Related]
8. A High-Rate V2 O5 Hollow Microclew Cathode for an All-Vanadium-Based Lithium-Ion Full Cell. Zhang P; Zhao L; An Q; Wei Q; Zhou L; Wei X; Sheng J; Mai L Small; 2016 Feb; 12(8):1082-90. PubMed ID: 26726814 [TBL] [Abstract][Full Text] [Related]
9. Mitigating Interfacial Capacity Fading in Vanadium Pentoxide by Sacrificial Vanadium Sulfide Encapsulation for Rechargeable Mg-Ion Batteries. Mukherjee A; Chakrabarty S; Taragin S; Evinstein E; Bhanja P; Joshi A; Aviv H; Perelshtein I; Mohapatra M; Basu S; Noked M Small; 2024 Jun; 20(24):e2308886. PubMed ID: 38174607 [TBL] [Abstract][Full Text] [Related]
10. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes. Yu X; Manthiram A Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389 [TBL] [Abstract][Full Text] [Related]
11. High-Capacity Aqueous Storage in Vanadate Cathodes Promoted by the Zn-Ion and Proton Intercalation and Conversion-Intercalation of Vanadyl Ions. Kim S; Shan X; Abeykoon M; Kwon G; Olds D; Teng X ACS Appl Mater Interfaces; 2021 Jun; 13(22):25993-26000. PubMed ID: 34019372 [TBL] [Abstract][Full Text] [Related]
12. Reticular V Tian B; Tang W; Su C; Li Y ACS Appl Mater Interfaces; 2018 Jan; 10(1):642-650. PubMed ID: 29256595 [TBL] [Abstract][Full Text] [Related]
13. Synthesis of Hierarchical Sisal-Like V Wu N; Du W; Liu G; Zhou Z; Fu HR; Tang Q; Liu X; He YB ACS Appl Mater Interfaces; 2017 Dec; 9(50):43681-43687. PubMed ID: 29148697 [TBL] [Abstract][Full Text] [Related]
14. Facile synthesis of hierarchical and porous V2O5 microspheres as cathode materials for lithium ion batteries. Wang HE; Chen DS; Cai Y; Zhang RL; Xu JM; Deng Z; Zheng XF; Li Y; Bello I; Su BL J Colloid Interface Sci; 2014 Mar; 418():74-80. PubMed ID: 24461820 [TBL] [Abstract][Full Text] [Related]
15. Facile Synthesis of V₂O₅ Hollow Spheres as Advanced Cathodes for High-Performance Lithium-Ion Batteries. Zhang X; Wang JG; Liu H; Liu H; Wei B Materials (Basel); 2017 Jan; 10(1):. PubMed ID: 28772435 [TBL] [Abstract][Full Text] [Related]
16. Vanadium Pentoxide Nanofibers/Carbon Nanotubes Hybrid Film for High-Performance Aqueous Zinc-Ion Batteries. Liu X; Ma L; Du Y; Lu Q; Yang A; Wang X Nanomaterials (Basel); 2021 Apr; 11(4):. PubMed ID: 33924150 [TBL] [Abstract][Full Text] [Related]
17. Enhancing the Electrochemical Performance of LiNi Chen Z; Wang Z; Kim GT; Yang G; Wang H; Wang X; Huang Y; Passerini S; Shen Z ACS Appl Mater Interfaces; 2019 Jul; 11(30):26994-27003. PubMed ID: 31290644 [TBL] [Abstract][Full Text] [Related]
18. Graphene-modified nanostructured vanadium pentoxide hybrids with extraordinary electrochemical performance for Li-ion batteries. Liu Q; Li ZF; Liu Y; Zhang H; Ren Y; Sun CJ; Lu W; Zhou Y; Stanciu L; Stach EA; Xie J Nat Commun; 2015 Jan; 6():6127. PubMed ID: 25600907 [TBL] [Abstract][Full Text] [Related]
19. Garnet-Type Fast Li-Ion Conductors with High Ionic Conductivities for All-Solid-State Batteries. Wu JF; Pang WK; Peterson VK; Wei L; Guo X ACS Appl Mater Interfaces; 2017 Apr; 9(14):12461-12468. PubMed ID: 28332828 [TBL] [Abstract][Full Text] [Related]
20. Impacts of Surface Energy on Lithium Ion Intercalation Properties of V2O5. Ma W; Zhang C; Liu C; Nan X; Fu H; Cao G ACS Appl Mater Interfaces; 2016 Aug; 8(30):19542-9. PubMed ID: 27400230 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]