These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 31180584)
1. Opacification of lentoid bodies derived from human induced pluripotent stem cells is accelerated by hydrogen peroxide and involves protein aggregation. Qin Z; Zhang L; Lyu D; Li J; Tang Q; Yin H; Chen Z; Yao K; Fu Q J Cell Physiol; 2019 Dec; 234(12):23750-23762. PubMed ID: 31180584 [TBL] [Abstract][Full Text] [Related]
2. Postponement of the opacification of lentoid bodies derived from human induced pluripotent stem cells after lanosterol treatment-the first use of the lens aging model Zhang L; Qin Z; Lyu D; Lu B; Chen Z; Fu Q; Yao K Front Pharmacol; 2022; 13():959978. PubMed ID: 36059984 [No Abstract] [Full Text] [Related]
3. Generation of Functional Lentoid Bodies From Human Induced Pluripotent Stem Cells Derived From Urinary Cells. Fu Q; Qin Z; Jin X; Zhang L; Chen Z; He J; Ji J; Yao K Invest Ophthalmol Vis Sci; 2017 Jan; 58(1):517-527. PubMed ID: 28125839 [TBL] [Abstract][Full Text] [Related]
4. Generation of Functional Lentoid Bodies from Human-Induced Pluripotent Stem Cells. Qin Z; Yao K; Fu Q Methods Mol Biol; 2025; 2848():25-36. PubMed ID: 39240514 [TBL] [Abstract][Full Text] [Related]
5. PKCalpha and PKCgamma overexpression causes lentoid body formation in the N/N 1003A rabbit lens epithelial cell line. Wagner LM; Takemoto DJ Mol Vis; 2001 Jun; 7():138-44. PubMed ID: 11436000 [TBL] [Abstract][Full Text] [Related]
7. Generation and proteome profiling of PBMC-originated, iPSC-derived lentoid bodies. Ali M; Kabir F; Raskar S; Renuse S; Na CH; Delannoy M; Khan SY; Riazuddin SA Stem Cell Res; 2020 Jul; 46():101813. PubMed ID: 32474394 [TBL] [Abstract][Full Text] [Related]
8. Efficient generation of lens progenitor cells and lentoid bodies from human embryonic stem cells in chemically defined conditions. Yang C; Yang Y; Brennan L; Bouhassira EE; Kantorow M; Cvekl A FASEB J; 2010 Sep; 24(9):3274-83. PubMed ID: 20410439 [TBL] [Abstract][Full Text] [Related]
9. Alpha-A-Crystallin Protects Lens Epithelial Cell-Derived iPSC-Like Cells Against Apoptosis Induced by Oxidative Stress. Yu Y; Jiang H; Li H; Song W; Xia X Cell Reprogram; 2016 Oct; 18(5):327-332. PubMed ID: 27696911 [TBL] [Abstract][Full Text] [Related]
10. Generation of Human Lens Epithelial-Like Cells From Patient-Specific Induced Pluripotent Stem Cells. Li D; Qiu X; Yang J; Liu T; Luo Y; Lu Y J Cell Physiol; 2016 Dec; 231(12):2555-62. PubMed ID: 26991066 [TBL] [Abstract][Full Text] [Related]
11. Aggregation of lens crystallins in an in vivo hyperbaric oxygen guinea pig model of nuclear cataract: dynamic light-scattering and HPLC analysis. Simpanya MF; Ansari RR; Suh KI; Leverenz VR; Giblin FJ Invest Ophthalmol Vis Sci; 2005 Dec; 46(12):4641-51. PubMed ID: 16303961 [TBL] [Abstract][Full Text] [Related]
12. A comparative analysis of alphaA- and alphaB-crystallin expression during the cell cycle in primary mouse lens epithelial cultures. Bai F; Xi J; Higashikubo R; Andley UP Exp Eye Res; 2004 Dec; 79(6):795-805. PubMed ID: 15642316 [TBL] [Abstract][Full Text] [Related]
13. Wnt5a Contributes to the Differentiation of Human Embryonic Stem Cells into Lentoid Bodies Through the Noncanonical Wnt/JNK Signaling Pathway. Han C; Li J; Wang C; Ouyang H; Ding X; Liu Y; Chen S; Luo L Invest Ophthalmol Vis Sci; 2018 Jul; 59(8):3449-3460. PubMed ID: 30025083 [TBL] [Abstract][Full Text] [Related]
14. Different alpha crystallin expression in human age-related and congenital cataract lens epithelium. Yang J; Zhou S; Guo M; Li Y; Gu J BMC Ophthalmol; 2016 May; 16():67. PubMed ID: 27234311 [TBL] [Abstract][Full Text] [Related]
15. Autophagy attenuates high glucose-induced oxidative injury to lens epithelial cells. Liu X; Zhao X; Cheng R; Huang Y Biosci Rep; 2020 Apr; 40(4):. PubMed ID: 32186721 [TBL] [Abstract][Full Text] [Related]
16. Growth and differentiation of human lens epithelial cells in vitro on matrix. Blakely EA; Bjornstad KA; Chang PY; McNamara MP; Chang E; Aragon G; Lin SP; Lui G; Polansky JR Invest Ophthalmol Vis Sci; 2000 Nov; 41(12):3898-907. PubMed ID: 11053292 [TBL] [Abstract][Full Text] [Related]
17. Phase separation of α-crystallin-GFP protein and its implication in cataract disease. Shi J; Zhu YX; Huang RY; Bai SM; Zheng YX; Zheng J; Xia ZX; Wang YL Sci Rep; 2023 Mar; 13(1):4832. PubMed ID: 36964267 [TBL] [Abstract][Full Text] [Related]
18. αA-crystallin gene CpG islands hypermethylation in nuclear cataract after pars plana vitrectomy. Zhu XJ; Zhang KK; Zhou P; Jiang CH; Lu Y Graefes Arch Clin Exp Ophthalmol; 2015 Jul; 253(7):1043-51. PubMed ID: 25663476 [TBL] [Abstract][Full Text] [Related]
19. A New Long Noncoding RNA ALB Regulates Autophagy by Enhancing the Transformation of LC3BI to LC3BII during Human Lens Development. Fu Q; Qin Z; Zhang L; Lyu D; Tang Q; Yin H; Chen Z; Yao K Mol Ther Nucleic Acids; 2017 Dec; 9():207-217. PubMed ID: 29246299 [TBL] [Abstract][Full Text] [Related]
20. Matrix-bound AGEs enhance TGFβ2-mediated mesenchymal transition of lens epithelial cells via the noncanonical pathway: implications for secondary cataract formation. Nam MH; Nagaraj RH Biochem J; 2018 Apr; 475(8):1427-1440. PubMed ID: 29588342 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]