These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 31180593)

  • 1. Mechanical loading stimulates hypertrophy in tissue-engineered skeletal muscle: Molecular and phenotypic responses.
    Aguilar-Agon KW; Capel AJ; Martin NRW; Player DJ; Lewis MP
    J Cell Physiol; 2019 Dec; 234(12):23547-23558. PubMed ID: 31180593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leucine elicits myotube hypertrophy and enhances maximal contractile force in tissue engineered skeletal muscle in vitro.
    Martin NRW; Turner MC; Farrington R; Player DJ; Lewis MP
    J Cell Physiol; 2017 Oct; 232(10):2788-2797. PubMed ID: 28409828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size.
    Trendelenburg AU; Meyer A; Rohner D; Boyle J; Hatakeyama S; Glass DJ
    Am J Physiol Cell Physiol; 2009 Jun; 296(6):C1258-70. PubMed ID: 19357233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracellular transglutaminase 2 induces myotube hypertrophy through G protein-coupled receptor 56.
    Kitakaze T; Yoshikawa M; Kobayashi Y; Kimura N; Goshima N; Ishikawa T; Ogata Y; Yamashita Y; Ashida H; Harada N; Yamaji R
    Biochim Biophys Acta Mol Cell Res; 2020 Feb; 1867(2):118563. PubMed ID: 31666191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insulin-like growth factor I-mediated skeletal muscle hypertrophy is characterized by increased mTOR-p70S6K signaling without increased Akt phosphorylation.
    Song YH; Godard M; Li Y; Richmond SR; Rosenthal N; Delafontaine P
    J Investig Med; 2005 Apr; 53(3):135-42. PubMed ID: 15921033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced contractile force generation by artificial skeletal muscle tissues using IGF-I gene-engineered myoblast cells.
    Sato M; Ito A; Kawabe Y; Nagamori E; Kamihira M
    J Biosci Bioeng; 2011 Sep; 112(3):273-8. PubMed ID: 21646045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acute mechanical overload increases IGF-I and MMP-9 mRNA in 3D tissue-engineered skeletal muscle.
    Player DJ; Martin NR; Passey SL; Sharples AP; Mudera V; Lewis MP
    Biotechnol Lett; 2014 May; 36(5):1113-24. PubMed ID: 24563297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contractile C2C12 myotube model for studying exercise-inducible responses in skeletal muscle.
    Nedachi T; Fujita H; Kanzaki M
    Am J Physiol Endocrinol Metab; 2008 Nov; 295(5):E1191-204. PubMed ID: 18780777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myostatin inhibits IGF-I-induced myotube hypertrophy through Akt.
    Morissette MR; Cook SA; Buranasombati C; Rosenberg MA; Rosenzweig A
    Am J Physiol Cell Physiol; 2009 Nov; 297(5):C1124-32. PubMed ID: 19759331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. mTORC1 and BMP-Smad1/5 regulation of serum-stimulated myotube hypertrophy: a role for autophagy.
    Zhang Q; Halle JL; Counts BR; Pi M; Carson JA
    Am J Physiol Cell Physiol; 2024 Jul; 327(1):C124-C139. PubMed ID: 38766767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Testosterone signals through mTOR and androgen receptor to induce muscle hypertrophy.
    Basualto-Alarcón C; Jorquera G; Altamirano F; Jaimovich E; Estrada M
    Med Sci Sports Exerc; 2013 Sep; 45(9):1712-20. PubMed ID: 23470307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of caffeine on skeletal muscle anabolic signaling and hypertrophy.
    Moore TM; Mortensen XM; Ashby CK; Harris AM; Kump KJ; Laird DW; Adams AJ; Bray JK; Chen T; Thomson DM
    Appl Physiol Nutr Metab; 2017 Jun; 42(6):621-629. PubMed ID: 28177708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical loading of tissue engineered skeletal muscle prevents dexamethasone induced myotube atrophy.
    Aguilar-Agon KW; Capel AJ; Fleming JW; Player DJ; Martin NRW; Lewis MP
    J Muscle Res Cell Motil; 2021 Jun; 42(2):149-159. PubMed ID: 32955689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The collagen derived dipeptide hydroxyprolyl-glycine promotes C2C12 myoblast differentiation and myotube hypertrophy.
    Kitakaze T; Sakamoto T; Kitano T; Inoue N; Sugihara F; Harada N; Yamaji R
    Biochem Biophys Res Commun; 2016 Sep; 478(3):1292-7. PubMed ID: 27553280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical Stimulation and IGF-1 Enhance mRNA Translation Rate in Osteoblasts Via Activation of the AKT-mTOR Pathway.
    Bakker AD; Gakes T; Hogervorst JM; de Wit GM; Klein-Nulend J; Jaspers RT
    J Cell Physiol; 2016 Jun; 231(6):1283-90. PubMed ID: 26505782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AMPD1 regulates mTORC1-p70 S6 kinase axis in the control of insulin sensitivity in skeletal muscle.
    Tandelilin AA; Hirase T; Hudoyo AW; Cheng J; Toyama K; Morisaki H; Morisaki T
    BMC Endocr Disord; 2015 Mar; 15():11. PubMed ID: 25887856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SB431542 treatment promotes the hypertrophy of skeletal muscle fibers but decreases specific force.
    Watt KI; Jaspers RT; Atherton P; Smith K; Rennie MJ; Ratkevicius A; Wackerhage H
    Muscle Nerve; 2010 May; 41(5):624-9. PubMed ID: 20151464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of mechanistic/mammalian target of rapamycin complex 1 on mitochondrial dynamics during skeletal muscle hypertrophy.
    Uemichi K; Shirai T; Hanakita H; Takemasa T
    Physiol Rep; 2021 Mar; 9(5):e14789. PubMed ID: 33660929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypoxia Impairs Muscle Function and Reduces Myotube Size in Tissue Engineered Skeletal Muscle.
    Martin NRW; Aguilar-Agon K; Robinson GP; Player DJ; Turner MC; Myers SD; Lewis MP
    J Cell Biochem; 2017 Sep; 118(9):2599-2605. PubMed ID: 28294416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical signals and IGF-I gene splicing in vitro in relation to development of skeletal muscle.
    Cheema U; Brown R; Mudera V; Yang SY; McGrouther G; Goldspink G
    J Cell Physiol; 2005 Jan; 202(1):67-75. PubMed ID: 15389530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.