These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 31180642)
1. Le QV; Suh J; Choi JJ; Park GT; Lee JW; Shim G; Oh YK ACS Nano; 2019 Jul; 13(7):7442-7462. PubMed ID: 31180642 [TBL] [Abstract][Full Text] [Related]
2. An Endogenous Vaccine Based on Fluorophores and Multivalent Immunoadjuvants Regulates Tumor Micro-Environment for Synergistic Photothermal and Immunotherapy. Li L; Yang S; Song L; Zeng Y; He T; Wang N; Yu C; Yin T; Liu L; Wei X; Wu Q; Wei Y; Yang L; Gong C Theranostics; 2018; 8(3):860-873. PubMed ID: 29344312 [TBL] [Abstract][Full Text] [Related]
3. Polydopamine nanoparticles cross-linked hyaluronic acid photothermal hydrogel with cascading immunoinducible effects for in situ antitumor vaccination. Fang Z; Yan Z; Li Z; Yan C; Jia S; Qiu X; Wang Q; Hou H; Wu Y; Du F; Gong A; Zhang M Int J Biol Macromol; 2024 Jun; 269(Pt 2):132177. PubMed ID: 38729484 [TBL] [Abstract][Full Text] [Related]
4. NIR responsive tumor vaccine in situ for photothermal ablation and chemotherapy to trigger robust antitumor immune responses. Zhang L; Zhang J; Xu L; Zhuang Z; Liu J; Liu S; Wu Y; Gong A; Zhang M; Du F J Nanobiotechnology; 2021 May; 19(1):142. PubMed ID: 34001148 [TBL] [Abstract][Full Text] [Related]
5. Programming of in Situ Tumor Vaccines via Supramolecular Nanodrug/Hydrogel Composite and Deformable Nanoadjuvant for Cancer Immunotherapy. Shao S; Cao Z; Xiao Z; Yu B; Hu L; Du XJ; Yang X Nano Lett; 2024 Jul; 24(29):9017-9026. PubMed ID: 39007530 [TBL] [Abstract][Full Text] [Related]
6. Targeted therapeutic remodeling of the tumor microenvironment improves an HER-2 DNA vaccine and prevents recurrence in a murine breast cancer model. Liao D; Liu Z; Wrasidlo WJ; Luo Y; Nguyen G; Chen T; Xiang R; Reisfeld RA Cancer Res; 2011 Sep; 71(17):5688-96. PubMed ID: 21784871 [TBL] [Abstract][Full Text] [Related]
7. Simultaneous silencing of the A2aR and PD-1 immune checkpoints by siRNA-loaded nanoparticles enhances the immunotherapeutic potential of dendritic cell vaccine in tumor experimental models. Karoon Kiani F; Izadi S; Ansari Dezfouli E; Ebrahimi F; Mohammadi M; Chalajour H; Mortazavi Bulus M; Nasr Esfahani M; Karpisheh V; Mahmoud Salehi Khesht A; Abbaszadeh-Goudarzi K; Soleimani A; Gholizadeh Navashenaq J; Ahmadi M; Hassannia H; Hojjat-Farsangi M; Shahmohammadi Farid S; Hashemi V; Jadidi-Niaragh F Life Sci; 2022 Jan; 288():120166. PubMed ID: 34813798 [TBL] [Abstract][Full Text] [Related]
8. In situ thermal ablation of tumors in combination with nano-adjuvant and immune checkpoint blockade to inhibit cancer metastasis and recurrence. Han X; Wang R; Xu J; Chen Q; Liang C; Chen J; Zhao J; Chu J; Fan Q; Archibong E; Jiang L; Wang C; Liu Z Biomaterials; 2019 Dec; 224():119490. PubMed ID: 31542515 [TBL] [Abstract][Full Text] [Related]
9. Immunogenic Cell Death Amplified by Co-localized Adjuvant Delivery for Cancer Immunotherapy. Fan Y; Kuai R; Xu Y; Ochyl LJ; Irvine DJ; Moon JJ Nano Lett; 2017 Dec; 17(12):7387-7393. PubMed ID: 29144754 [TBL] [Abstract][Full Text] [Related]
10. PDL1-targeted vaccine exhibits potent antitumor activity by simultaneously blocking PD1/PDL1 pathway and activating PDL1-specific immune responses. Tian H; Kang Y; Song X; Xu Y; Chen H; Gong X; Zhang W; Xu Y; Xia X; Gao X; Yao W Cancer Lett; 2020 Apr; 476():170-182. PubMed ID: 32092355 [TBL] [Abstract][Full Text] [Related]
11. Lysyl oxidase-responsive anchoring nanoparticles for modulation of the tumor immune microenvironment. Park J; Kim JS; Yang G; Lee H; Shim G; Lee J; Oh YK J Control Release; 2023 Aug; 360():376-391. PubMed ID: 37406820 [TBL] [Abstract][Full Text] [Related]
12. Engineering nanoparticles to locally activate T cells in the tumor microenvironment. Wang D; Wang T; Yu H; Feng B; Zhou L; Zhou F; Hou B; Zhang H; Luo M; Li Y Sci Immunol; 2019 Jul; 4(37):. PubMed ID: 31300478 [TBL] [Abstract][Full Text] [Related]
13. [Effects of hMIP-1beta gene modification on in vivo tumorigenicity and vaccine efficacy of tumor cells]. Luo XL; Xie YA; Kuang ZP; Wu JN; Liang AM Zhonghua Zhong Liu Za Zhi; 2008 Feb; 30(2):97-102. PubMed ID: 18646689 [TBL] [Abstract][Full Text] [Related]
14. Apoptotic, but not necrotic, tumor cell vaccines induce a potent immune response in vivo. Scheffer SR; Nave H; Korangy F; Schlote K; Pabst R; Jaffee EM; Manns MP; Greten TF Int J Cancer; 2003 Jan; 103(2):205-11. PubMed ID: 12455034 [TBL] [Abstract][Full Text] [Related]
15. Tumor-targeted nanoplatform for in situ oxygenation-boosted immunogenic phototherapy of colorectal cancer. He H; Liu L; Liang R; Zhou H; Pan H; Zhang S; Cai L Acta Biomater; 2020 Mar; 104():188-197. PubMed ID: 31945508 [TBL] [Abstract][Full Text] [Related]
16. Immunomodulatory properties of antineoplastic drugs administered in conjunction with GM-CSF-secreting cancer cell vaccines. Nigam A; Yacavone RF; Zahurak ML; Johns CM; Pardoll DM; Piantadosi S; Levitsky HI; Nelson WG Int J Oncol; 1998 Jan; 12(1):161-70. PubMed ID: 9454900 [TBL] [Abstract][Full Text] [Related]
17. Administration of Dendritic Cells and Anti-PD-1 Antibody Converts X-ray Irradiated Tumors Into Effective In situ Vaccines. Wang Y; Zenkoh J; Gerelchuluun A; Sun L; Cai S; Li X; Tsuboi K Int J Radiat Oncol Biol Phys; 2019 Mar; 103(4):958-969. PubMed ID: 30458232 [TBL] [Abstract][Full Text] [Related]
18. Targeting the tumor microenvironment with amphiphilic near-infrared cyanine nanoparticles for potentiated photothermal immunotherapy. Noh I; Son Y; Jung W; Kim M; Kim D; Shin H; Kim YC; Jon S Biomaterials; 2021 Aug; 275():120926. PubMed ID: 34147723 [TBL] [Abstract][Full Text] [Related]
19. Near-Infrared-Triggered Photodynamic Therapy with Multitasking Upconversion Nanoparticles in Combination with Checkpoint Blockade for Immunotherapy of Colorectal Cancer. Xu J; Xu L; Wang C; Yang R; Zhuang Q; Han X; Dong Z; Zhu W; Peng R; Liu Z ACS Nano; 2017 May; 11(5):4463-4474. PubMed ID: 28362496 [TBL] [Abstract][Full Text] [Related]
20. Immune Adjuvant Activity of Pre-Resectional Radiofrequency Ablation Protects against Local and Systemic Recurrence in Aggressive Murine Colorectal Cancer. Ito F; Ku AW; Bucsek MJ; Muhitch JB; Vardam-Kaur T; Kim M; Fisher DT; Camoriano M; Khoury T; Skitzki JJ; Gollnick SO; Evans SS PLoS One; 2015; 10(11):e0143370. PubMed ID: 26599402 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]