These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. Competition between bridged dinucleotides and activated mononucleotides determines the error frequency of nonenzymatic RNA primer extension. Duzdevich D; Carr CE; Ding D; Zhang SJ; Walton TS; Szostak JW Nucleic Acids Res; 2021 Apr; 49(7):3681-3691. PubMed ID: 33744957 [TBL] [Abstract][Full Text] [Related]
25. Nucleotide-based copying of nucleic acid sequences without enzymes. Kaiser A; Richert C J Org Chem; 2013 Feb; 78(3):793-9. PubMed ID: 23327991 [TBL] [Abstract][Full Text] [Related]
26. A Facile and General Tandem Oligonucleotide Synthesis Methodology for DNA and RNA. Saraya JS; O'Flaherty DK Chembiochem; 2024 Mar; 25(6):e202300870. PubMed ID: 38179859 [TBL] [Abstract][Full Text] [Related]
27. Template-Directed Catalysis of a Multistep Reaction Pathway for Nonenzymatic RNA Primer Extension. Walton T; Pazienza L; Szostak JW Biochemistry; 2019 Feb; 58(6):755-762. PubMed ID: 30566332 [TBL] [Abstract][Full Text] [Related]
28. Structural RNA mimetics: N3'-->P5' phosphoramidate DNA analogs of HIV-1 RRE and TAR RNA form A-type helices that bind specifically to Rev and Tat-related peptides. Rigl CT; Lloyd DH; Tsou DS; Gryaznov SM; Wilson WD Biochemistry; 1997 Jan; 36(3):650-9. PubMed ID: 9012680 [TBL] [Abstract][Full Text] [Related]
29. Kinetic explanations for the sequence biases observed in the nonenzymatic copying of RNA templates. Ding D; Zhou L; Giurgiu C; Szostak JW Nucleic Acids Res; 2022 Jan; 50(1):35-45. PubMed ID: 34893864 [TBL] [Abstract][Full Text] [Related]
30. Supramolecular Nanoscaffolds within Cytomimetic Protocells as Signal Localization Hubs. Magdalena Estirado E; Mason AF; Alemán García MÁ; van Hest JCM; Brunsveld L J Am Chem Soc; 2020 May; 142(20):9106-9111. PubMed ID: 32356660 [TBL] [Abstract][Full Text] [Related]
31. NMR solution structure of the N3' --> P5' phosphoramidate duplex d(CGCGAATTCGCG)2 by the iterative relaxation matrix approach. Ding D; Gryaznov SM; Wilson WD Biochemistry; 1998 Sep; 37(35):12082-93. PubMed ID: 9724520 [TBL] [Abstract][Full Text] [Related]
32. Crystallographic observation of nonenzymatic RNA primer extension. Zhang W; Walton T; Li L; Szostak JW Elife; 2018 May; 7():. PubMed ID: 29851379 [TBL] [Abstract][Full Text] [Related]
33. Structural interpretation of the effects of threo-nucleotides on nonenzymatic template-directed polymerization. Zhang W; Kim SC; Tam CP; Lelyveld VS; Bala S; Chaput JC; Szostak JW Nucleic Acids Res; 2021 Jan; 49(2):646-656. PubMed ID: 33347562 [TBL] [Abstract][Full Text] [Related]
34. Computer simulations of Template-Directed RNA Synthesis driven by temperature cycling in diverse sequence mixtures. Chamanian P; Higgs PG PLoS Comput Biol; 2022 Aug; 18(8):e1010458. PubMed ID: 36001640 [TBL] [Abstract][Full Text] [Related]
36. Analysis of an oligonucleotide N3'-->P5' phosphoramidate/phosphorothioate chimera with capillary gel electrophoresis. DeDionisio LA; Raible AM; Nelson JS Electrophoresis; 1998 Nov; 19(16-17):2935-8. PubMed ID: 9870392 [TBL] [Abstract][Full Text] [Related]
37. The virtual circular genome model for primordial RNA replication. Zhou L; Ding D; Szostak JW RNA; 2021 Jan; 27(1):1-11. PubMed ID: 33028653 [TBL] [Abstract][Full Text] [Related]
38. A Model for the Emergence of RNA from a Prebiotically Plausible Mixture of Ribonucleotides, Arabinonucleotides, and 2'-Deoxynucleotides. Kim SC; Zhou L; Zhang W; O'Flaherty DK; Rondo-Brovetto V; Szostak JW J Am Chem Soc; 2020 Feb; 142(5):2317-2326. PubMed ID: 31913615 [TBL] [Abstract][Full Text] [Related]
39. The Emergence of RNA from the Heterogeneous Products of Prebiotic Nucleotide Synthesis. Kim SC; O'Flaherty DK; Giurgiu C; Zhou L; Szostak JW J Am Chem Soc; 2021 Mar; 143(9):3267-3279. PubMed ID: 33636080 [TBL] [Abstract][Full Text] [Related]