These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 31180648)

  • 1. Programmable Protein-DNA Cross-Linking for the Direct Capture and Quantification of 5-Formylcytosine.
    Gieß M; Muñoz-López Á; Buchmuller B; Kubik G; Summerer D
    J Am Chem Soc; 2019 Jun; 141(24):9453-9457. PubMed ID: 31180648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective recognition of
    Rathi P; Maurer S; Summerer D
    Philos Trans R Soc Lond B Biol Sci; 2018 Jun; 373(1748):. PubMed ID: 29685980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and Application of DNA Modification-Specific Transcription-Activator-Like Effectors.
    Buchmuller B; Muñoz-López Á; Gieß M; Summerer D
    Methods Mol Biol; 2021; 2198():381-399. PubMed ID: 32822046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interrogating Key Positions of Size-Reduced TALE Repeats Reveals a Programmable Sensor of 5-Carboxylcytosine.
    Maurer S; Giess M; Koch O; Summerer D
    ACS Chem Biol; 2016 Dec; 11(12):3294-3299. PubMed ID: 27978710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complete, Programmable Decoding of Oxidized 5-Methylcytosine Nucleobases in DNA by Chemoselective Blockage of Universal Transcription-Activator-Like Effector Repeats.
    Gieß M; Witte A; Jasper J; Koch O; Summerer D
    J Am Chem Soc; 2018 May; 140(18):5904-5908. PubMed ID: 29677450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation of Human Genomic DNA Sequences with Expanded Nucleobase Selectivity.
    Rathi P; Maurer S; Kubik G; Summerer D
    J Am Chem Soc; 2016 Aug; 138(31):9910-8. PubMed ID: 27429302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 5-Formylcytosine-induced DNA-peptide cross-links reduce transcription efficiency, but do not cause transcription errors in human cells.
    Ji S; Park D; Kropachev K; Kolbanovskiy M; Fu I; Broyde S; Essawy M; Geacintov NE; Tretyakova NY
    J Biol Chem; 2019 Nov; 294(48):18387-18397. PubMed ID: 31597704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The N6-Position of Adenine Is a Blind Spot for TAL-Effectors That Enables Effective Binding of Methylated and Fluorophore-Labeled DNA.
    Flade S; Jasper J; Gieß M; Juhasz M; Dankers A; Kubik G; Koch O; Weinhold E; Summerer D
    ACS Chem Biol; 2017 Jul; 12(7):1719-1725. PubMed ID: 28493677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversible DNA-Protein Cross-Linking at Epigenetic DNA Marks.
    Ji S; Shao H; Han Q; Seiler CL; Tretyakova NY
    Angew Chem Int Ed Engl; 2017 Nov; 56(45):14130-14134. PubMed ID: 28898504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bisulfite-free, base-resolution analysis of 5-formylcytosine at the genome scale.
    Xia B; Han D; Lu X; Sun Z; Zhou A; Yin Q; Zeng H; Liu M; Jiang X; Xie W; He C; Yi C
    Nat Methods; 2015 Nov; 12(11):1047-50. PubMed ID: 26344045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Programmable sensors of 5-hydroxymethylcytosine.
    Kubik G; Batke S; Summerer D
    J Am Chem Soc; 2015 Jan; 137(1):2-5. PubMed ID: 25562518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Programmable tools for targeted analysis of epigenetic DNA modifications.
    Buchmuller B; Jung A; Muñoz-López Á; Summerer D
    Curr Opin Chem Biol; 2021 Aug; 63():1-10. PubMed ID: 33588304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineered TALE Repeats for Enhanced Imaging-Based Analysis of Cellular 5-Methylcytosine.
    Muñoz-López Á; Jung A; Buchmuller B; Wolffgramm J; Maurer S; Witte A; Summerer D
    Chembiochem; 2021 Feb; 22(4):645-651. PubMed ID: 32991020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile Clamp-Assisted Ligation Strategy for Direct Discrimination and Background-Free Quantification of Site-Specific 5-Formylcytosine.
    Zhang Z; Yang D; Tian W; Qi Y; Ren W; Li Z; Liu C
    Anal Chem; 2020 Feb; 92(4):3477-3482. PubMed ID: 31970980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemoselective labeling and site-specific mapping of 5-formylcytosine as a cellular nucleic acid modification.
    Dietzsch J; Feineis D; Höbartner C
    FEBS Lett; 2018 Jun; 592(12):2032-2047. PubMed ID: 29683490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TALEored Epigenetics: A DNA-Binding Scaffold for Programmable Epigenome Editing and Analysis.
    Kubik G; Summerer D
    Chembiochem; 2016 Jun; 17(11):975-80. PubMed ID: 26972580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cucurbit[7]uril-Driven Host-Guest Chemistry for Reversible Intervention of 5-Formylcytosine-Targeted Biochemical Reactions.
    Wang SR; Song YY; Wei L; Liu CX; Fu BS; Wang JQ; Yang XR; Liu YN; Liu SM; Tian T; Zhou X
    J Am Chem Soc; 2017 Nov; 139(46):16903-16912. PubMed ID: 29091409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering DNA Backbone Interactions Results in TALE Scaffolds with Enhanced 5-Methylcytosine Selectivity.
    Rathi P; Witte A; Summerer D
    Sci Rep; 2017 Nov; 7(1):15067. PubMed ID: 29118409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overcoming conservation in TALE-DNA interactions: a minimal repeat scaffold enables selective recognition of an oxidized 5-methylcytosine.
    Maurer S; Buchmuller B; Ehrt C; Jasper J; Koch O; Summerer D
    Chem Sci; 2018 Sep; 9(36):7247-7252. PubMed ID: 30288245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modified nucleobase-specific gene regulation using engineered transcription activator-like effectors.
    Tsuji S; Imanishi M
    Adv Drug Deliv Rev; 2019 Jul; 147():59-65. PubMed ID: 31513826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.