BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 31180661)

  • 1. Molecular Mechanisms of Membrane Curvature Sensing by a Disordered Protein.
    Zeno WF; Thatte AS; Wang L; Snead WT; Lafer EM; Stachowiak JC
    J Am Chem Soc; 2019 Jul; 141(26):10361-10371. PubMed ID: 31180661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergy between intrinsically disordered domains and structured proteins amplifies membrane curvature sensing.
    Zeno WF; Baul U; Snead WT; DeGroot ACM; Wang L; Lafer EM; Thirumalai D; Stachowiak JC
    Nat Commun; 2018 Oct; 9(1):4152. PubMed ID: 30297718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into Membrane Curvature Sensing and Membrane Remodeling by Intrinsically Disordered Proteins and Protein Regions.
    Has C; Sivadas P; Das SL
    J Membr Biol; 2022 Jun; 255(2-3):237-259. PubMed ID: 35451616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intrinsically disordered proteins drive membrane curvature.
    Busch DJ; Houser JR; Hayden CC; Sherman MB; Lafer EM; Stachowiak JC
    Nat Commun; 2015 Jul; 6():7875. PubMed ID: 26204806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A curvature-dependent membrane binding by tyrosine kinase Fer involves an intrinsically disordered region.
    Yamamoto H; Kondo A; Itoh T
    Biochem Biophys Res Commun; 2018 Jan; 495(1):1522-1527. PubMed ID: 29208465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shaping membranes with disordered proteins.
    Fakhree MAA; Blum C; Claessens MMAE
    Arch Biochem Biophys; 2019 Nov; 677():108163. PubMed ID: 31672499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The curvature sensitivity of a membrane-binding amphipathic helix can be modulated by the charge on a flanking region.
    Chong SS; Taneva SG; Lee JM; Cornell RB
    Biochemistry; 2014 Jan; 53(3):450-61. PubMed ID: 24397368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying Protein Disorder through Measures of Excess Conformational Entropy.
    Rajasekaran N; Gopi S; Narayan A; Naganathan AN
    J Phys Chem B; 2016 May; 120(19):4341-50. PubMed ID: 27111521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane shape deformation induced by curvature-inducing proteins consisting of chiral crescent binding and intrinsically disordered domains.
    Noguchi H
    J Chem Phys; 2022 Jul; 157(3):034901. PubMed ID: 35868922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ins and outs of membrane bending by intrinsically disordered proteins.
    Yuan F; Lee CT; Sangani A; Houser JR; Wang L; Lafer EM; Rangamani P; Stachowiak JC
    Sci Adv; 2023 Jul; 9(27):eadg3485. PubMed ID: 37418523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational Entropy of Intrinsically Disordered Proteins from Amino Acid Triads.
    Baruah A; Rani P; Biswas P
    Sci Rep; 2015 Jul; 5():11740. PubMed ID: 26138206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Side chain electrostatic interactions and pH-dependent expansion of the intrinsically disordered, highly acidic carboxyl-terminus of γ-tubulin.
    Payliss BJ; Vogel J; Mittermaier AK
    Protein Sci; 2019 Jun; 28(6):1095-1105. PubMed ID: 30968464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The entropic force generated by intrinsically disordered segments tunes protein function.
    Keul ND; Oruganty K; Schaper Bergman ET; Beattie NR; McDonald WE; Kadirvelraj R; Gross ML; Phillips RS; Harvey SC; Wood ZA
    Nature; 2018 Nov; 563(7732):584-588. PubMed ID: 30420606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamics of Conformational Transitions in a Disordered Protein Backbone Model.
    Drake JA; Pettitt BM
    Biophys J; 2018 Jun; 114(12):2799-2810. PubMed ID: 29925017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular mechanisms of steric pressure generation and membrane remodeling by disordered proteins.
    Houser JR; Cho HW; Hayden CC; Yang NX; Wang L; Lafer EM; Thirumalai D; Stachowiak JC
    Biophys J; 2022 Sep; 121(18):3320-3333. PubMed ID: 36016498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Salt-bridge dynamics in intrinsically disordered proteins: A trade-off between electrostatic interactions and structural flexibility.
    Basu S; Biswas P
    Biochim Biophys Acta Proteins Proteom; 2018; 1866(5-6):624-641. PubMed ID: 29548979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intrinsically disordered proteins and membranes: a marriage of convenience for cell signalling?
    Cornish J; Chamberlain SG; Owen D; Mott HR
    Biochem Soc Trans; 2020 Dec; 48(6):2669-2689. PubMed ID: 33155649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structured and intrinsically disordered domains within Amphiphysin1 work together to sense and drive membrane curvature.
    Zeno WF; Snead WT; Thatte AS; Stachowiak JC
    Soft Matter; 2019 Nov; 15(43):8706-8717. PubMed ID: 31621751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational entropy of intrinsically disordered protein.
    Chong SH; Ham S
    J Phys Chem B; 2013 May; 117(18):5503-9. PubMed ID: 23531173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Annexin B12 is a sensor of membrane curvature and undergoes major curvature-dependent structural changes.
    Fischer T; Lu L; Haigler HT; Langen R
    J Biol Chem; 2007 Mar; 282(13):9996-10004. PubMed ID: 17267400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.