These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 31180664)

  • 1. Theoretical Estimation of Donor Strength of Common Conjugated Units for Organic Electronics.
    Köse ME
    J Phys Chem A; 2019 Jul; 123(26):5566-5573. PubMed ID: 31180664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of acceptor strength in thiophene coupled donor-acceptor chromophores for optimal design of organic photovoltaic materials.
    Köse ME
    J Phys Chem A; 2012 Dec; 116(51):12503-9. PubMed ID: 23215534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lewis Acid-Base Chemistry of 7-Azaisoindigo-Based Organic Semiconductors.
    Randell NM; Fransishyn KM; Kelly TL
    ACS Appl Mater Interfaces; 2017 Jul; 9(29):24788-24796. PubMed ID: 28670896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Push-pull macrocycles: donor-acceptor compounds with paired linearly conjugated or cross-conjugated pathways.
    Leu WC; Fritz AE; Digianantonio KM; Hartley CS
    J Org Chem; 2012 Mar; 77(5):2285-98. PubMed ID: 22300291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical studies on donor-acceptor based macrocycles for organic solar cell applications.
    Haseena S; Ravva MK
    Sci Rep; 2022 Sep; 12(1):15043. PubMed ID: 36057668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organic Donor-Acceptor Complexes as Novel Organic Semiconductors.
    Zhang J; Xu W; Sheng P; Zhao G; Zhu D
    Acc Chem Res; 2017 Jul; 50(7):1654-1662. PubMed ID: 28608673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Band Gap Engineering in Acceptor-Donor-Acceptor Boron Difluoride Formazanates.
    Dhindsa JS; Buguis FL; Anghel M; Gilroy JB
    J Org Chem; 2021 Sep; 86(17):12064-12074. PubMed ID: 34355898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thiophene-Bridged Donor-Acceptor sp
    Xu S; Sun H; Addicoat M; Biswal BP; He F; Park S; Paasch S; Zhang T; Sheng W; Brunner E; Hou Y; Richter M; Feng X
    Adv Mater; 2021 Jan; 33(1):e2006274. PubMed ID: 33191503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design principles for the energy level tuning in donor/acceptor conjugated polymers.
    Hashemi D; Ma X; Ansari R; Kim J; Kieffer J
    Phys Chem Chem Phys; 2019 Jan; 21(2):789-799. PubMed ID: 30556085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating Donor Effects in Isoindigo-Based Small Molecular Fluorophores.
    Vijayan SM; Sparks N; Roy JK; Smith C; Tate C; Hammer NI; Leszczynski J; Watkins DL
    J Phys Chem A; 2020 Dec; 124(51):10777-10786. PubMed ID: 33305579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrinsic Properties of Two Benzodithiophene-Based Donor--Acceptor Copolymers Used in Organic Solar Cells: A Quantum-Chemical Approach.
    Kastinen T; Niskanen M; Risko C; Cramariuc O; Hukka TI
    J Phys Chem A; 2016 Feb; 120(7):1051-64. PubMed ID: 26840559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficiency improvement of new Tetrathienoacene-based dyes by enhancing donor, acceptor and bridge units, a theoretical study.
    Tavangar Z; Zareie N
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Oct; 167():72-77. PubMed ID: 27258685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How to Design Donor-Acceptor Based Heterocyclic Conjugated Polymers for Applications from Organic Electronics to Sensors.
    Mahesh K; Karpagam S; Pandian K
    Top Curr Chem (Cham); 2019 Apr; 377(3):12. PubMed ID: 31011839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low Band Gap Donor-Acceptor Conjugated Systems Based on 3-Alkoxy or 3-Pyrrolidino-4-cyanothiophene and Benzothiadiazole Units.
    Savitha G; Moussallem C; Allain M; Gohier F; Frère P
    Chem Asian J; 2017 Aug; 12(15):1935-1943. PubMed ID: 28488416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Donor-Bridge-Acceptor Strategies for High-Capacitance Organic Dielectric Materials.
    Heitzer HM; Marks TJ; Ratner MA
    J Am Chem Soc; 2015 Jun; 137(22):7189-96. PubMed ID: 25978594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Donor-Acceptor Substitution on Optoelectronic Properties of Conducting Organic Polymers.
    Salzner U
    J Chem Theory Comput; 2014 Nov; 10(11):4921-37. PubMed ID: 26584377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substituent effect on the π linkers in triphenylamine dyes for sensitized solar cells: a DFT/TDDFT study.
    Xu J; Zhu L; Fang D; Chen B; Liu L; Wang L; Xu W
    Chemphyschem; 2012 Oct; 13(14):3320-9. PubMed ID: 22763917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and electronic properties of Alq3 derivatives with electron acceptor/donor groups at the C4 positions of the quinolate ligands: a theoretical study.
    Rao JL; Bhanuprakash K
    J Mol Model; 2011 Dec; 17(12):3039-46. PubMed ID: 21360184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and characterization of a class of donor-acceptor conjugated molecules: experiments and theoretical calculations.
    Mukhopadhyay S; Kanth RB; Ramasesha S; Patil S
    J Phys Chem A; 2010 Apr; 114(13):4647-54. PubMed ID: 20225811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-triphenylamine-substituted porphyrin-fullerene conjugates as charge stabilizing "antenna-reaction center" mimics.
    D'Souza F; Gadde S; Islam DM; Wijesinghe CA; Schumacher AL; Zandler ME; Araki Y; Ito O
    J Phys Chem A; 2007 Sep; 111(35):8552-60. PubMed ID: 17608464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.