These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 31180836)

  • 1. Learning and Tracking the 3D Body Shape of Freely Moving Infants from RGB-D sequences.
    Hesse N; Pujades S; Black MJ; Arens M; Hofmann UG; Schroeder AS
    IEEE Trans Pattern Anal Mach Intell; 2020 Oct; 42(10):2540-2551. PubMed ID: 31180836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. General Movement Assessment from videos of computed 3D infant body models is equally effective compared to conventional RGB video rating.
    Schroeder AS; Hesse N; Weinberger R; Tacke U; Gerstl L; Hilgendorff A; Heinen F; Arens M; Dijkstra LJ; Pujades Rocamora S; Black MJ; Bodensteiner C; Hadders-Algra M
    Early Hum Dev; 2020 May; 144():104967. PubMed ID: 32304982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Analysis of motor development within the first year of life: 3-D motion tracking without markers for early detection of developmental disorders].
    Parisi C; Hesse N; Tacke U; Pujades Rocamora S; Blaschek A; Hadders-Algra M; Black MJ; Heinen F; Müller-Felber W; Schroeder AS
    Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz; 2020 Jul; 63(7):881-890. PubMed ID: 32572501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic Human Body Modeling Using a Single RGB Camera.
    Zhu H; Yu Y; Zhou Y; Du S
    Sensors (Basel); 2016 Mar; 16(3):. PubMed ID: 26999159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A self-supervised spatio-temporal attention network for video-based 3D infant pose estimation.
    Yin W; Chen L; Huang X; Huang C; Wang Z; Bian Y; Wan Y; Zhou Y; Han T; Yi M
    Med Image Anal; 2024 Aug; 96():103208. PubMed ID: 38788327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic Posture and Movement Tracking of Infants with Wearable Movement Sensors.
    Airaksinen M; Räsänen O; Ilén E; Häyrinen T; Kivi A; Marchi V; Gallen A; Blom S; Varhe A; Kaartinen N; Haataja L; Vanhatalo S
    Sci Rep; 2020 Jan; 10(1):169. PubMed ID: 31932616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feature Boosting Network For 3D Pose Estimation.
    Liu J; Ding H; Shahroudy A; Duan LY; Jiang X; Wang G; Kot AC
    IEEE Trans Pattern Anal Mach Intell; 2020 Feb; 42(2):494-501. PubMed ID: 30676946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional unsupervised probabilistic pose reconstruction (3D-UPPER) for freely moving animals.
    Ebrahimi AS; Orlowska-Feuer P; Huang Q; Zippo AG; Martial FP; Petersen RS; Storchi R
    Sci Rep; 2023 Jan; 13(1):155. PubMed ID: 36599877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D limb movement tracking and analysis for neurological dysfunctions of neonates using multi-camera videos.
    Gu IY; Sowulewski G; Yixiao Yun ; Flisberg A; Thordstein M
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2395-2398. PubMed ID: 28268807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recovering 3D human pose from monocular images.
    Agarwal A; Triggs B
    IEEE Trans Pattern Anal Mach Intell; 2006 Jan; 28(1):44-58. PubMed ID: 16402618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Infants' General Movements Using a Commercial RGB-Depth Sensor and a Deep Neural Network Tracking Processing Tool: An Exploratory Study.
    Balta D; Kuo H; Wang J; Porco IG; Morozova O; Schladen MM; Cereatti A; Lum PS; Della Croce U
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate estimation of human body orientation from RGB-D sensors.
    Liu W; Zhang Y; Tang S; Tang J; Hong R; Li J
    IEEE Trans Cybern; 2013 Oct; 43(5):1442-52. PubMed ID: 23893759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-Time 3D Facial Tracking via Cascaded Compositional Learning.
    Lou J; Cai X; Dong J; Yu H
    IEEE Trans Image Process; 2021; 30():3844-3857. PubMed ID: 33735081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LEAPSE: Learning Environment Affordances for 3D Human Pose and Shape Estimation.
    Tian F; Kim S
    IEEE Trans Image Process; 2024; 33():3285-3300. PubMed ID: 38709601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Posture normalisation of 3D body scans.
    Danckaers F; Huysmans T; Hallemans A; De Bruyne G; Truijen S; Sijbers J
    Ergonomics; 2019 Jun; 62(6):834-848. PubMed ID: 30777506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tracking people on a torus.
    Elgammal A; Lee CS
    IEEE Trans Pattern Anal Mach Intell; 2009 Mar; 31(3):520-38. PubMed ID: 19147879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LiftPose3D, a deep learning-based approach for transforming two-dimensional to three-dimensional poses in laboratory animals.
    Gosztolai A; Günel S; Lobato-Ríos V; Pietro Abrate M; Morales D; Rhodin H; Fua P; Ramdya P
    Nat Methods; 2021 Aug; 18(8):975-981. PubMed ID: 34354294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A machine learning based method for tracking of simultaneously imaged neural activity and body posture of freely moving maggot.
    Huang Z; Sun Y; Liu S; Chen X; Ping J; Fei P; Gong Z; Zheng N
    Biochem Biophys Res Commun; 2024 Oct; 727():150290. PubMed ID: 38941792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Gaussian process guided particle filter for tracking 3D human pose in video.
    Sedai S; Bennamoun M; Huynh du Q
    IEEE Trans Image Process; 2013 Nov; 22(11):4286-300. PubMed ID: 23846470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nearly automatic motion capture system for tracking octopus arm movements in 3D space.
    Zelman I; Galun M; Akselrod-Ballin A; Yekutieli Y; Hochner B; Flash T
    J Neurosci Methods; 2009 Aug; 182(1):97-109. PubMed ID: 19505502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.