BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 31180863)

  • 1. The Body's Compensatory Responses to Unpredictable Trip and Slip Perturbations Induced by a Programmable Split-Belt Treadmill.
    Lee BC; Kim CS; Seo KH
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jul; 27(7):1389-1396. PubMed ID: 31180863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of the most common gait perturbations on the compensatory limb's ankle, knee, and hip moments during the first stepping response.
    Yoo D; Seo KH; Lee BC
    Gait Posture; 2019 Jun; 71():98-104. PubMed ID: 31031225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age-related adaptation of the body's kinematic responses to unpredictable trip perturbations induced by a split-belt treadmill
    Yoo D; Lee C; Ahn J; Lee BC
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aging Affects Lower Limb Joint Moments and Muscle Responses to a Split-Belt Treadmill Perturbation.
    Yoo D; An J; Seo KH; Lee BC
    Front Sports Act Living; 2021; 3():683039. PubMed ID: 34350396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new fall-inducing technology platform: Development and assessment of a programmable split-belt treadmill.
    Beom-Chan Lee ; Martin BJ; Thrasher TA; Layne CS
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3777-3780. PubMed ID: 29060720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transfer of reactive balance adaptation from stance-slip perturbation to stance-trip perturbation in chronic stroke survivors.
    Dusane S; Wang E; Bhatt T
    Restor Neurol Neurosci; 2019; 37(5):469-482. PubMed ID: 31561399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The different contributions of the eight prefrontal cortex subregions to reactive responses after unpredictable slip perturbations and vibrotactile cueing.
    Lee BC; Choi J; Ahn J; Martin BJ
    Front Hum Neurosci; 2023; 17():1236065. PubMed ID: 37746054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patterns of whole-body muscle activations following vertical perturbations during standing and walking.
    Cano Porras D; Jacobs JV; Inzelberg R; Bahat Y; Zeilig G; Plotnik M
    J Neuroeng Rehabil; 2021 May; 18(1):75. PubMed ID: 33957953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of various arm and walking conditions on postural dynamic stability when recovering from a trip perturbation.
    Gholizadeh H; Hill A; Nantel J
    Gait Posture; 2020 Feb; 76():284-289. PubMed ID: 31884255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The margin of stability is affected differently when walking under quasi-random treadmill perturbations with or without full visual support.
    Wang Z; Xie H; Chien JH
    PeerJ; 2024; 12():e16919. PubMed ID: 38390385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Treadmill-based gait-slip training with reduced training volume could still prevent slip-related falls.
    Yang F; Cereceres P; Qiao M
    Gait Posture; 2018 Oct; 66():160-165. PubMed ID: 30195219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased use of stepping strategy in response to medio-lateral perturbations in the elderly relates to altered reactive tibialis anterior activity.
    Afschrift M; van Deursen R; De Groote F; Jonkers I
    Gait Posture; 2019 Feb; 68():575-582. PubMed ID: 30654320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of sudden walking perturbations on neuromuscular reflex activity and three-dimensional motion of the trunk in healthy controls and back pain symptomatic subjects.
    Mueller J; Engel T; Mueller S; Stoll J; Baur H; Mayer F
    PLoS One; 2017; 12(3):e0174034. PubMed ID: 28319133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. More symmetrical gait after split-belt treadmill walking does not modify dynamic and postural balance in individuals post-stroke.
    Miéville C; Lauzière S; Betschart M; Nadeau S; Duclos C
    J Electromyogr Kinesiol; 2018 Aug; 41():41-49. PubMed ID: 29747067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrocortical activity changes in response to unpredictable trip perturbations induced by a split-belt treadmill.
    An J; Yoo D; Lee BC
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():110-113. PubMed ID: 31945856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gait muscle activity during walking on an inclined icy surface.
    Gao C; Oksa J; Rintamäki H; Holmér I
    Ind Health; 2008 Jan; 46(1):15-22. PubMed ID: 18270446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A single session of trip-specific training modifies trunk control following treadmill induced balance perturbations in stroke survivors.
    Nevisipour M; Grabiner MD; Honeycutt CF
    Gait Posture; 2019 May; 70():222-228. PubMed ID: 30904789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comprehensive dataset on biomechanics and motor control during human walking with discrete mechanical perturbations.
    Lorenz DL; van den Bogert AJ
    PeerJ; 2024; 12():e17256. PubMed ID: 38699182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Method for evoking a trip-like response using a treadmill-based perturbation during locomotion.
    Sessoms PH; Wyatt M; Grabiner M; Collins JD; Kingsbury T; Thesing N; Kaufman K
    J Biomech; 2014 Jan; 47(1):277-80. PubMed ID: 24268756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterizing slip-like responses during gait using an entire support surface perturbation: Comparisons to previously established slip methods.
    Huntley AH; Rajachandrakumar R; Schinkel-Ivy A; Mansfield A
    Gait Posture; 2019 Mar; 69():130-135. PubMed ID: 30708096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.