These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 31180864)

  • 1. Proportional Myoelectric Control of a Virtual Inverted Pendulum Using Residual Antagonistic Muscles: Toward Voluntary Postural Control.
    Fleming A; Huang S; Huang H
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jul; 27(7):1473-1482. PubMed ID: 31180864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voluntary Control of Residual Antagonistic Muscles in Transtibial Amputees: Feedforward Ballistic Contractions and Implications for Direct Neural Control of Powered Lower Limb Prostheses.
    Huang S; Huang H
    IEEE Trans Neural Syst Rehabil Eng; 2018 Apr; 26(4):894-903. PubMed ID: 29641394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Voluntary Control of Residual Antagonistic Muscles in Transtibial Amputees: Reciprocal Activation, Coactivation, and Implications for Direct Neural Control of Powered Lower Limb Prostheses.
    Huang S; Huang H
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jan; 27(1):85-95. PubMed ID: 30530332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coordination of Voluntary Residual Muscle Contractions in Transtibial Amputees: a Pilot Study.
    Fleming A; Huang S; Huang HH
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2128-2131. PubMed ID: 30440824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proportional Myoelectric Control of a Powered Ankle Prosthesis for Postural Control under Expected Perturbation: A Pilot Study.
    Fleming A; Huang HH
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():899-904. PubMed ID: 31374744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Locomotor Adaptation by Transtibial Amputees Walking With an Experimental Powered Prosthesis Under Continuous Myoelectric Control.
    Huang S; Wensman JP; Ferris DP
    IEEE Trans Neural Syst Rehabil Eng; 2016 May; 24(5):573-81. PubMed ID: 26057851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-contraction patterns of trans-tibial amputee ankle and knee musculature during gait.
    Seyedali M; Czerniecki JM; Morgenroth DC; Hahn ME
    J Neuroeng Rehabil; 2012 May; 9():29. PubMed ID: 22640660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lower-Limb Myoelectric Calibration Postures for Transtibial Prostheses.
    Posh RR; Barry EC; Schmiedeler JP; Wensing PM
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():1210-1220. PubMed ID: 38451767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ankle muscle co-contractions during quiet standing are associated with decreased postural steadiness in the elderly.
    Vette AH; Sayenko DG; Jones M; Abe MO; Nakazawa K; Masani K
    Gait Posture; 2017 Jun; 55():31-36. PubMed ID: 28411442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterizing Residual Muscle Properties in Lower Limb Amputees Using High Density EMG Decomposition: A Pilot Study
    Fylstra BL; Dai C; Hu X; Huang HH
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5974-5977. PubMed ID: 30441697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Promise of using surface EMG signals to volitionally control ankle joint position for powered transtibial prostheses.
    Chen B; Wang Q; Wang L
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2545-8. PubMed ID: 25570509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-contraction of ankle muscle activity during quiet standing in individuals with incomplete spinal cord injury is associated with postural instability.
    Fok KL; Lee JW; Unger J; Chan K; Musselman KE; Masani K
    Sci Rep; 2021 Oct; 11(1):19599. PubMed ID: 34599267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Voluntary control of forward leaning posture relates to low-frequency neural inputs to the medial gastrocnemius muscle.
    Watanabe T; Nojima I; Sugiura H; Yacoubi B; Christou EA
    Gait Posture; 2019 Feb; 68():187-192. PubMed ID: 30497039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential control of reciprocal inhibition during walking versus postural and voluntary motor tasks in humans.
    Lavoie BA; Devanne H; Capaday C
    J Neurophysiol; 1997 Jul; 78(1):429-38. PubMed ID: 9242291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human balancing of an inverted pendulum: is sway size controlled by ankle impedance?
    Loram ID; Kelly SM; Lakie M
    J Physiol; 2001 May; 532(Pt 3):879-91. PubMed ID: 11313453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different ankle muscle coordination patterns and co-activation during quiet stance between young adults and seniors do not change after a bout of high intensity training.
    Donath L; Kurz E; Roth R; Zahner L; Faude O
    BMC Geriatr; 2015 Mar; 15():19. PubMed ID: 25888336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning an intermittent control strategy for postural balancing using an EMG-based human-computer interface.
    Asai Y; Tateyama S; Nomura T
    PLoS One; 2013; 8(5):e62956. PubMed ID: 23717398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of ankle muscle activation on postural sway during quiet stance.
    Warnica MJ; Weaver TB; Prentice SD; Laing AC
    Gait Posture; 2014 Apr; 39(4):1115-21. PubMed ID: 24613374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anticipatory control of center of mass and joint stability during voluntary arm movement from a standing posture: interplay between active and passive control.
    Patla AE; Ishac MG; Winter DA
    Exp Brain Res; 2002 Apr; 143(3):318-27. PubMed ID: 11889509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myoelectric Control Based on a Generic Musculoskeletal Model: Toward a Multi-User Neural-Machine Interface.
    Pan L; Crouch DL; Huang H
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jul; 26(7):1435-1442. PubMed ID: 29985153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.