BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 31180894)

  • 1. Micro-Electrical Impedance Spectroscopy and Identification of Patient-Derived, Dissociated Tumor Cells.
    Desai SP; Coston A; Berlin A
    IEEE Trans Nanobioscience; 2019 Jul; 18(3):369-372. PubMed ID: 31180894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo O2 measurement inside single photosynthetic cells.
    Bai SJ; Ryu W; Fasching RJ; Grossman AR; Prinz FB
    Biotechnol Lett; 2011 Aug; 33(8):1675-81. PubMed ID: 21476096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis.
    Heileman K; Daoud J; Tabrizian M
    Biosens Bioelectron; 2013 Nov; 49():348-59. PubMed ID: 23796534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Microfluidic Device Integrating Impedance Flow Cytometry and Electric Impedance Spectroscopy for High-Efficiency Single-Cell Electrical Property Measurement.
    Feng Y; Huang L; Zhao P; Liang F; Wang W
    Anal Chem; 2019 Dec; 91(23):15204-15212. PubMed ID: 31702127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review of impedance measurements of whole cells.
    Xu Y; Xie X; Duan Y; Wang L; Cheng Z; Cheng J
    Biosens Bioelectron; 2016 Mar; 77():824-36. PubMed ID: 26513290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Label-free impedance detection of cancer cells from whole blood on an integrated centrifugal microfluidic platform.
    Nwankire CE; Venkatanarayanan A; Glennon T; Keyes TE; Forster RJ; Ducrée J
    Biosens Bioelectron; 2015 Jun; 68():382-389. PubMed ID: 25613813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concepts, electrode configuration, characterization, and data analytics of electric and electrochemical microfluidic platforms: a review.
    Nguyen TH; Nguyen HA; Tran Thi YV; Hoang Tran D; Cao H; Chu Duc T; Bui TT; Do Quang L
    Analyst; 2023 May; 148(9):1912-1929. PubMed ID: 36928639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Label-free virus identification and characterization using electrochemical impedance spectroscopy.
    Poenar DP; Iliescu C; Boulaire J; Yu H
    Electrophoresis; 2014 Feb; 35(2-3):433-40. PubMed ID: 24285469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Efficiency Single-Cell Electrical Impedance Spectroscopy.
    Feng Y; Huang L; Zhao P; Liang F; Wang W
    Methods Mol Biol; 2023; 2644():81-97. PubMed ID: 37142917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single HeLa and MCF-7 cell measurement using minimized impedance spectroscopy and microfluidic device.
    Wang MH; Kao MF; Jang LS
    Rev Sci Instrum; 2011 Jun; 82(6):064302. PubMed ID: 21721710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impedance spectroscopy-based cell/particle position detection in microfluidic systems.
    Wang H; Sobahi N; Han A
    Lab Chip; 2017 Mar; 17(7):1264-1269. PubMed ID: 28267168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A label-free and low-power microelectronic impedance spectroscopy for characterization of exosomes.
    Shi L; Esfandiari L
    PLoS One; 2022; 17(7):e0270844. PubMed ID: 35802670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detecting particles flowing through interdigitated 3D microelectrodes.
    Bianchi E; Rollo E; Kilchenmann S; Bellati FM; Accastelli E; Guiducci C
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5002-5. PubMed ID: 23367051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biophysical phenotyping of single cells using a differential multiconstriction microfluidic device with self-aligned 3D electrodes.
    Yang D; Zhou Y; Zhou Y; Han J; Ai Y
    Biosens Bioelectron; 2019 May; 133():16-23. PubMed ID: 30903937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dielectric spectroscopy of red blood cells in sickle cell disease.
    Liu J; Qiang Y; Du E
    Electrophoresis; 2021 Mar; 42(5):667-675. PubMed ID: 33314275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved detection limits of toxic biochemical species based on impedance measurements in electrochemical biosensors.
    Narakathu BB; Atashbar MZ; Bejcek BE
    Biosens Bioelectron; 2010 Oct; 26(2):923-8. PubMed ID: 20655726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On-Chip Impedance Spectroscopy of Malaria-Infected Red Blood Cells.
    Panklang N; Techaumnat B; Tanthanuch N; Chotivanich K; Horprathum M; Nakano M
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38794040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic device for mechanical dissociation of cancer cell aggregates into single cells.
    Qiu X; De Jesus J; Pennell M; Troiani M; Haun JB
    Lab Chip; 2015 Jan; 15(1):339-350. PubMed ID: 25377468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic device for continuous single cells analysis via Raman spectroscopy enhanced by integrated plasmonic nanodimers.
    Perozziello G; Candeloro P; De Grazia A; Esposito F; Allione M; Coluccio ML; Tallerico R; Valpapuram I; Tirinato L; Das G; Giugni A; Torre B; Veltri P; Kruhne U; Della Valle G; Di Fabrizio E
    Opt Express; 2016 Jan; 24(2):A180-90. PubMed ID: 26832572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interdigitated microelectrode-based microchip for electrical impedance spectroscopic study of oral cancer cells.
    Mamouni J; Yang L
    Biomed Microdevices; 2011 Dec; 13(6):1075-88. PubMed ID: 21833766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.