These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 31180894)

  • 21. Determination of single cell surface protein expression using a tagless microfluidic method.
    Kumar R; Vellanki SH; Smith R; Wieder R
    Lab Chip; 2012 May; 12(9):1646-55. PubMed ID: 22415775
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Printed interdigital electrodes on plastic film for tumor cells density monitoring.
    Chen L; Guo J
    Electrophoresis; 2015 Aug; 36(16):1859-61. PubMed ID: 26031624
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Leukocyte analysis and differentiation using high speed microfluidic single cell impedance cytometry.
    Holmes D; Pettigrew D; Reccius CH; Gwyer JD; van Berkel C; Holloway J; Davies DE; Morgan H
    Lab Chip; 2009 Oct; 9(20):2881-9. PubMed ID: 19789739
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of Electrical Impedance Spectroscopy-on-a-Needle as a Novel Tool to Determine Optimal Surgical Margin in Partial Nephrectomy.
    Kim HW; Yun J; Lee JZ; Shin DG; Lee JH
    Adv Healthc Mater; 2017 Sep; 6(18):. PubMed ID: 28696572
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microfluidic Biopsy Trapping Device for the Real-Time Monitoring of Tumor Microenvironment.
    Holton AB; Sinatra FL; Kreahling J; Conway AJ; Landis DA; Altiok S
    PLoS One; 2017; 12(1):e0169797. PubMed ID: 28085924
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microtrap electrode devices for single cell trapping and impedance measurement.
    Mondal D; Roychaudhuri C; Das L; Chatterjee J
    Biomed Microdevices; 2012 Oct; 14(5):955-64. PubMed ID: 22767244
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microfluidic Flow Cytometry for Single-Cell Protein Analysis.
    Wu M; Singh AK
    Methods Mol Biol; 2015; 1346():69-83. PubMed ID: 26542716
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Carbon nanotube based dielectric spectroscopy of tumor secretion; electrochemical lipidomics for cancer diagnosis.
    Zandi A; Gilani A; Abbasvandi F; Katebi P; Tafti SR; Assadi S; Moghtaderi H; Parizi MS; Saghafi M; Khayamian MA; Davari Sh Z; Hoseinpour P; Gity M; Sanati H; Abdolahad M
    Biosens Bioelectron; 2019 Oct; 142():111566. PubMed ID: 31404879
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantification of Cell Death Using an Impedance-Based Microfluidic Device.
    Mansoorifar A; Koklu A; Beskok A
    Anal Chem; 2019 Mar; 91(6):4140-4148. PubMed ID: 30793881
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single-cell enzyme-free dissociation of neurospheres using a microfluidic chip.
    Lin CH; Lee DC; Chang HC; Chiu IM; Hsu CH
    Anal Chem; 2013 Dec; 85(24):11920-8. PubMed ID: 24228937
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Single-cell resolution diagnosis of cancer cells by carbon nanotube electrical spectroscopy.
    Abdolahad M; Janmaleki M; Taghinejad M; Taghnejad H; Salehi F; Mohajerzadeh S
    Nanoscale; 2013 Apr; 5(8):3421-7. PubMed ID: 23474499
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-Speed Single-Cell Dielectric Spectroscopy.
    Spencer D; Morgan H
    ACS Sens; 2020 Feb; 5(2):423-430. PubMed ID: 32013406
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Monitoring time course of human whole blood coagulation using a microfluidic dielectric sensor with a 3D capacitive structure.
    Maji D; Suster MA; Stavrou E; Gurkan UA; Mohseni P
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5904-7. PubMed ID: 26737635
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On-chip screening for prostate cancer: an EIS microfluidic platform for contemporary detection of free and total PSA.
    Chiriacò MS; Primiceri E; Montanaro A; de Feo F; Leone L; Rinaldi R; Maruccio G
    Analyst; 2013 Sep; 138(18):5404-10. PubMed ID: 23884165
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the compatibility of single-cell microcarriers (nanovials) with microfluidic impedance cytometry.
    Brandi C; De Ninno A; Ruggiero F; Limiti E; Abbruzzese F; Trombetta M; Rainer A; Bisegna P; Caselli F
    Lab Chip; 2024 May; 24(11):2883-2892. PubMed ID: 38717432
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Classification of cell types using a microfluidic device for mechanical and electrical measurement on single cells.
    Chen J; Zheng Y; Tan Q; Shojaei-Baghini E; Zhang YL; Li J; Prasad P; You L; Wu XY; Sun Y
    Lab Chip; 2011 Sep; 11(18):3174-81. PubMed ID: 21826361
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integrating solid-state sensor and microfluidic devices for glucose, urea and creatinine detection based on enzyme-carrying alginate microbeads.
    Lin YH; Wang SH; Wu MH; Pan TM; Lai CS; Luo JD; Chiou CC
    Biosens Bioelectron; 2013 May; 43():328-35. PubMed ID: 23356998
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improvement of Depth Profiling into Biotissues Using Micro Electrical Impedance Spectroscopy on a Needle with Selective Passivation.
    Yun J; Kim HW; Lee JH
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 28009845
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impedance spectroscopy using maximum length sequences: application to single cell analysis.
    Gawad S; Sun T; Green NG; Morgan H
    Rev Sci Instrum; 2007 May; 78(5):054301. PubMed ID: 17552843
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monitoring Single S. cerevisiae Cells with Multifrequency Electrical Impedance Spectroscopy in an Electrode-Integrated Microfluidic Device.
    Zhu Z; Geng Y; Wang Y
    Methods Mol Biol; 2021; 2189():105-118. PubMed ID: 33180297
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.