These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 31180904)
21. Dynamic output feedback-based fault-tolerant control design for T-S fuzzy systems with model uncertainties. Sun S; Zhang H; Wang Y; Cai Y ISA Trans; 2018 Oct; 81():32-45. PubMed ID: 30190084 [TBL] [Abstract][Full Text] [Related]
22. Takagi-Sugeno fuzzy model based robust dissipative control for uncertain flexible spacecraft with saturated time-delay input. Xu S; Sun G; Sun W ISA Trans; 2017 Jan; 66():105-121. PubMed ID: 27816179 [TBL] [Abstract][Full Text] [Related]
23. Quantized Feedback Control of Fuzzy Markov Jump Systems. Zhang M; Shi P; Ma L; Cai J; Su H IEEE Trans Cybern; 2019 Sep; 49(9):3375-3384. PubMed ID: 29994142 [TBL] [Abstract][Full Text] [Related]
24. Observer-Based Dissipativity Control for T-S Fuzzy Neural Networks With Distributed Time-Varying Delays. Li H; Li C; Ouyang D; Nguang SK; He Z IEEE Trans Cybern; 2021 Nov; 51(11):5248-5258. PubMed ID: 32191908 [TBL] [Abstract][Full Text] [Related]
25. Stability analysis of interval type-2 fuzzy-model-based control systems. Lam HK; Seneviratne LD IEEE Trans Syst Man Cybern B Cybern; 2008 Jun; 38(3):617-28. PubMed ID: 18558528 [TBL] [Abstract][Full Text] [Related]
26. Stability analysis of Takagi-Sugeno fuzzy cellular neural networks with time-varying delays. Hou YY; Liao TL; Yan JJ IEEE Trans Syst Man Cybern B Cybern; 2007 Jun; 37(3):720-6. PubMed ID: 17550125 [TBL] [Abstract][Full Text] [Related]
27. Finite-Time [Formula: see text] Asynchronous Control for Nonlinear Markov Jump Distributed Parameter Systems via Quantized Fuzzy Output-Feedback Approach. Song X; Wang M; Ahn CK; Song S IEEE Trans Cybern; 2020 Sep; 50(9):4098-4109. PubMed ID: 31502999 [TBL] [Abstract][Full Text] [Related]
28. Constrained Output-Feedback Control for Discrete-Time Fuzzy Systems With Local Nonlinear Models Subject to State and Input Constraints. Nguyen AT; Coutinho P; Guerra TM; Palhares R; Pan J IEEE Trans Cybern; 2021 Sep; 51(9):4673-4684. PubMed ID: 32749993 [TBL] [Abstract][Full Text] [Related]
29. Design of robust reliable control for T-S fuzzy Markovian jumping delayed neutral type neural networks with probabilistic actuator faults and leakage delays: An event-triggered communication scheme. Syed Ali M; Vadivel R; Saravanakumar R ISA Trans; 2018 Jun; 77():30-48. PubMed ID: 29729976 [TBL] [Abstract][Full Text] [Related]
30. A novel criteria on exponentially passive analysis for Takagi-Sugeno fuzzy of neutral dynamic system with various time-varying delays. Tranthi J; Botmart T PLoS One; 2022; 17(10):e0275057. PubMed ID: 36206211 [TBL] [Abstract][Full Text] [Related]
31. Stability analysis for delayed T-S fuzzy systems: A compensation Lyapunov-Krasovskii functional method combined with free-weighting matrices. Li Y; He Y; Yang Y ISA Trans; 2023 Nov; 142():12-19. PubMed ID: 37658006 [TBL] [Abstract][Full Text] [Related]
32. Mode-independent robust stabilization for uncertain Markovian jump nonlinear systems via fuzzy control. Wu HN; Cai KY IEEE Trans Syst Man Cybern B Cybern; 2006 Jun; 36(3):509-19. PubMed ID: 16761806 [TBL] [Abstract][Full Text] [Related]
33. A new approach to guaranteed cost control of T-s fuzzy dynamic systems with interval parameter uncertainties. Zhao Y; Zhang C; Gao H IEEE Trans Syst Man Cybern B Cybern; 2009 Dec; 39(6):1516-27. PubMed ID: 19473945 [TBL] [Abstract][Full Text] [Related]
34. Fuzzy dynamic output feedback H Zhao T; Dian S ISA Trans; 2017 Sep; 70():248-259. PubMed ID: 28528137 [TBL] [Abstract][Full Text] [Related]
35. Stabilization of Positive Systems With Time Delay via the Takagi-Sugeno Fuzzy Impulsive Control. Hu MJ; Park JH; Wang YW IEEE Trans Cybern; 2022 Jun; 52(6):4275-4285. PubMed ID: 33095727 [TBL] [Abstract][Full Text] [Related]
36. Dynamic output feedback control synthesis for continuous-time T-S fuzzy systems via a switched fuzzy control scheme. Dong J; Yang GH IEEE Trans Syst Man Cybern B Cybern; 2008 Aug; 38(4):1166-75. PubMed ID: 18632406 [TBL] [Abstract][Full Text] [Related]
37. H(∞) constrained fuzzy control via state observer feedback for discrete-time Takagi-Sugeno fuzzy systems with multiplicative noises. Chang WJ; Wu WY; Ku CC ISA Trans; 2011 Jan; 50(1):37-43. PubMed ID: 21040913 [TBL] [Abstract][Full Text] [Related]
38. Synthesis of nonlinear discrete control systems via time-delay affine Takagi-Sugeno fuzzy models. Chang WJ; Chang W ISA Trans; 2005 Apr; 44(2):243-57. PubMed ID: 15868862 [TBL] [Abstract][Full Text] [Related]
39. Observer design for Takagi-Sugeno fuzzy systems with unmeasured premise variables: Conservatism reduction using line integral Lyapunov function. Mimoune K; Hammoudi MY; Hamdi W; Mimoune SM ISA Trans; 2023 Nov; 142():626-634. PubMed ID: 37586932 [TBL] [Abstract][Full Text] [Related]
40. Takagi-Sugeno fuzzy modeling and chaos control of partial differential systems. Vasegh N; Khellat F Chaos; 2013 Dec; 23(4):042101. PubMed ID: 24387539 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]