BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 31181064)

  • 1. Predicting three-dimensional genome organization with chromatin states.
    Qi Y; Zhang B
    PLoS Comput Biol; 2019 Jun; 15(6):e1007024. PubMed ID: 31181064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of different three-dimensional polymer models of interphase chromosomes compared to experiments-an evaluation and review framework of the 3D genome organization.
    Knoch TA
    Semin Cell Dev Biol; 2019 Jun; 90():19-42. PubMed ID: 30125668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional folding dynamics of the Xenopus tropicalis genome.
    Niu L; Shen W; Shi Z; Tan Y; He N; Wan J; Sun J; Zhang Y; Huang Y; Wang W; Fang C; Li J; Zheng P; Cheung E; Chen Y; Li L; Hou C
    Nat Genet; 2021 Jul; 53(7):1075-1087. PubMed ID: 34099928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational Analysis of Hi-C Data.
    Forcato M; Bicciato S
    Methods Mol Biol; 2021; 2157():103-125. PubMed ID: 32820401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low Input Targeted Chromatin Capture (Low-T2C).
    Boltsis I; Nowosad K; Brouwer RWW; Tylzanowski P; van IJcken WFJ; Huylebroeck D; Grosveld F; Kolovos P
    Methods Mol Biol; 2021; 2351():165-179. PubMed ID: 34382189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predictive polymer modeling reveals coupled fluctuations in chromosome conformation and transcription.
    Giorgetti L; Galupa R; Nora EP; Piolot T; Lam F; Dekker J; Tiana G; Heard E
    Cell; 2014 May; 157(4):950-63. PubMed ID: 24813616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MrTADFinder: A network modularity based approach to identify topologically associating domains in multiple resolutions.
    Yan KK; Lou S; Gerstein M
    PLoS Comput Biol; 2017 Jul; 13(7):e1005647. PubMed ID: 28742097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding 3D Genome Organization and Its Effect on Transcriptional Gene Regulation Under Environmental Stress in Plant: A Chromatin Perspective.
    Kumar S; Kaur S; Seem K; Kumar S; Mohapatra T
    Front Cell Dev Biol; 2021; 9():774719. PubMed ID: 34957106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of 3D Chromatin Interactions Using Hi-C.
    Hu G
    Methods Mol Biol; 2020; 2117():65-78. PubMed ID: 31960372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SpectralTAD: an R package for defining a hierarchy of topologically associated domains using spectral clustering.
    Cresswell KG; Stansfield JC; Dozmorov MG
    BMC Bioinformatics; 2020 Jul; 21(1):319. PubMed ID: 32689928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural Fluctuations of the Chromatin Fiber within Topologically Associating Domains.
    Tiana G; Amitai A; Pollex T; Piolot T; Holcman D; Heard E; Giorgetti L
    Biophys J; 2016 Mar; 110(6):1234-45. PubMed ID: 27028634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detecting hierarchical genome folding with network modularity.
    Norton HK; Emerson DJ; Huang H; Kim J; Titus KR; Gu S; Bassett DS; Phillips-Cremins JE
    Nat Methods; 2018 Feb; 15(2):119-122. PubMed ID: 29334377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis, Modeling, and Visualization of Chromosome Conformation Capture Experiments.
    Di Stefano M; Castillo D; Serra F; Farabella I; Goodstadt MN; Marti-Renom MA
    Methods Mol Biol; 2021; 2157():35-63. PubMed ID: 32820398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct polymer physics principles govern chromatin dynamics in mouse and Drosophila topological domains.
    Ea V; Sexton T; Gostan T; Herviou L; Baudement MO; Zhang Y; Berlivet S; Le Lay-Taha MN; Cathala G; Lesne A; Victor JM; Fan Y; Cavalli G; Forné T
    BMC Genomics; 2015 Aug; 16(1):607. PubMed ID: 26271925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial organization of chromatin domains and compartments in single chromosomes.
    Wang S; Su JH; Beliveau BJ; Bintu B; Moffitt JR; Wu CT; Zhuang X
    Science; 2016 Aug; 353(6299):598-602. PubMed ID: 27445307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Topologically associating domains are stable units of replication-timing regulation.
    Pope BD; Ryba T; Dileep V; Yue F; Wu W; Denas O; Vera DL; Wang Y; Hansen RS; Canfield TK; Thurman RE; Cheng Y; Gülsoy G; Dennis JH; Snyder MP; Stamatoyannopoulos JA; Taylor J; Hardison RC; Kahveci T; Ren B; Gilbert DM
    Nature; 2014 Nov; 515(7527):402-5. PubMed ID: 25409831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bayesian inference of chromatin structure ensembles from population-averaged contact data.
    Carstens S; Nilges M; Habeck M
    Proc Natl Acad Sci U S A; 2020 Apr; 117(14):7824-7830. PubMed ID: 32193349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromatin-driven behavior of topologically associating domains.
    Ciabrelli F; Cavalli G
    J Mol Biol; 2015 Feb; 427(3):608-25. PubMed ID: 25280896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Joint annotation of chromatin state and chromatin conformation reveals relationships among domain types and identifies domains of cell-type-specific expression.
    Libbrecht MW; Ay F; Hoffman MM; Gilbert DM; Bilmes JA; Noble WS
    Genome Res; 2015 Apr; 25(4):544-57. PubMed ID: 25677182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of transposable elements and distal enhancers to evolution of human-specific features of interphase chromatin architecture in embryonic stem cells.
    Glinsky GV
    Chromosome Res; 2018 Mar; 26(1-2):61-84. PubMed ID: 29335803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.