BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 31181173)

  • 1. Test-Retest Reliability of Relative Fundamental Frequency and Conventional Acoustic, Aerodynamic, and Perceptual Measures in Individuals With Healthy Voices.
    Park Y; Stepp CE
    J Speech Lang Hear Res; 2019 Jun; 62(6):1707-1718. PubMed ID: 31181173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Test-retest reliability for aerodynamic measures of voice.
    Awan SN; Novaleski CK; Yingling JR
    J Voice; 2013 Nov; 27(6):674-84. PubMed ID: 24119644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cepstral analysis of hypokinetic and ataxic voices: correlations with perceptual and other acoustic measures.
    Jannetts S; Lowit A
    J Voice; 2014 Nov; 28(6):673-80. PubMed ID: 24836365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differences and Reliability of Linear and Nonlinear Acoustic Measures as a Function of Vocal Intensity in Individuals With Voice Disorders.
    de Oliveira Florencio V; Almeida AA; Balata P; Nascimento S; Brockmann-Bauser M; Lopes LW
    J Voice; 2023 Sep; 37(5):663-681. PubMed ID: 34116889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Consistency of voice frequency and perturbation measures in children using cepstral analyses: a movement toward increased recording stability.
    Diercks GR; Ojha S; Infusino S; Maurer R; Hartnick CJ
    JAMA Otolaryngol Head Neck Surg; 2013 Aug; 139(8):811-6. PubMed ID: 23949356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Individual Monitoring of Vocal Effort With Relative Fundamental Frequency: Relationships With Aerodynamics and Listener Perception.
    Lien YA; Michener CM; Eadie TL; Stepp CE
    J Speech Lang Hear Res; 2015 Jun; 58(3):566-75. PubMed ID: 25675090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aerodynamic and acoustic features of vocal effort.
    Rosenthal AL; Lowell SY; Colton RH
    J Voice; 2014 Mar; 28(2):144-53. PubMed ID: 24412040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perceptual and Acoustic Assessment of Strain Using Synthetically Modified Voice Samples.
    Park Y; Cádiz MD; Nagle KF; Stepp CE
    J Speech Lang Hear Res; 2020 Dec; 63(12):3897-3908. PubMed ID: 33151770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The relationship between perception of vocal effort and relative fundamental frequency during voicing offset and onset.
    Stepp CE; Sawin DE; Eadie TL
    J Speech Lang Hear Res; 2012 Dec; 55(6):1887-96. PubMed ID: 22615477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A phrase captures aerodynamic and acoustic data in healthy voice users and in patients with voice disorders.
    Grillo EU
    Logoped Phoniatr Vocol; 2020 Apr; 45(1):24-29. PubMed ID: 30514141
    [No Abstract]   [Full Text] [Related]  

  • 11. Voice Relative Fundamental Frequency Via Neck-Skin Acceleration in Individuals With Voice Disorders.
    Lien YA; Calabrese CR; Michener CM; Murray EH; Van Stan JH; Mehta DD; Hillman RE; Noordzij JP; Stepp CE
    J Speech Lang Hear Res; 2015 Oct; 58(5):1482-7. PubMed ID: 26134171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How Does Our Voice Change as We Age? A Systematic Review and Meta-Analysis of Acoustic and Perceptual Voice Data From Healthy Adults Over 50 Years of Age.
    Rojas S; Kefalianos E; Vogel A
    J Speech Lang Hear Res; 2020 Feb; 63(2):533-551. PubMed ID: 32083980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of cepstral analysis for differentiating dysphonic from normal voices in children.
    Esen Aydinli F; Özcebe E; İncebay Ö
    Int J Pediatr Otorhinolaryngol; 2019 Jan; 116():107-113. PubMed ID: 30554679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Relationship Between Auditory-Perceptual Rating Scales and Objective Voice Measures in Children With Voice Disorders.
    Fujiki RB; Thibeault SL
    Am J Speech Lang Pathol; 2021 Jan; 30(1):228-238. PubMed ID: 33439742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Examining Relationships Between GRBAS Ratings and Acoustic, Aerodynamic and Patient-Reported Voice Measures in Adults With Voice Disorders.
    Fujiki RB; Thibeault SL
    J Voice; 2023 May; 37(3):390-397. PubMed ID: 33750626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perceptual, Aerodynamic and Acoustic Evaluation of Vocal Characteristics in Subjects With Obesity.
    Munjal S; Sharma A; Chhabra N; Panda N
    J Voice; 2024 May; 38(3):660-665. PubMed ID: 34969555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The relationship between acoustical and perceptual measures of vocal effort.
    McKenna VS; Stepp CE
    J Acoust Soc Am; 2018 Sep; 144(3):1643. PubMed ID: 30424674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The vocal clarity of female speech-language pathology students: an exploratory study.
    Warhurst S; Madill C; McCabe P; Heard R; Yiu E
    J Voice; 2012 Jan; 26(1):63-8. PubMed ID: 21439779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation of an Algorithm for Semi-automated Estimation of Voice Relative Fundamental Frequency.
    Lien YS; Heller Murray ES; Calabrese CR; Michener CM; Van Stan JH; Mehta DD; Hillman RE; Noordzij JP; Stepp CE
    Ann Otol Rhinol Laryngol; 2017 Oct; 126(10):712-716. PubMed ID: 28849664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Adventitious Acute Vocal Trauma: Relative Fundamental Frequency and Listener Perception.
    Murray ES; Hands GL; Calabrese CR; Stepp CE
    J Voice; 2016 Mar; 30(2):177-85. PubMed ID: 26028369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.