These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 31181175)
1. Adductory Vocal Fold Kinematic Trajectories During Conventional Versus High-Speed Videoendoscopy. Diaz-Cadiz M; McKenna VS; Vojtech JM; Stepp CE J Speech Lang Hear Res; 2019 Jun; 62(6):1685-1706. PubMed ID: 31181175 [TBL] [Abstract][Full Text] [Related]
2. The Effects of Humming on the Prephonatory Vocal Fold Motions Under High-Speed Digital Imaging in Nondysphonic Speakers. Iwahashi T; Ogawa M; Hosokawa K; Kato C; Inohara H J Voice; 2017 May; 31(3):291-299. PubMed ID: 27726905 [TBL] [Abstract][Full Text] [Related]
3. A Detailed Motion Analysis of the Angular Velocity Between the Vocal Folds During Throat Clearing Using High-speed Digital Imaging. Iwahashi T; Ogawa M; Hosokawa K; Kato C; Inohara H J Voice; 2016 Nov; 30(6):770.e1-770.e8. PubMed ID: 26778326 [TBL] [Abstract][Full Text] [Related]
4. Influence of spatial camera resolution in high-speed videoendoscopy on laryngeal parameters. Schlegel P; Kunduk M; Stingl M; Semmler M; Döllinger M; Bohr C; Schützenberger A PLoS One; 2019; 14(4):e0215168. PubMed ID: 31009488 [TBL] [Abstract][Full Text] [Related]
5. Laryngeal High-Speed Videoendoscopy with Laser Illumination: A Preliminary Report. Malinowski J; Niebudek-Bogusz E; Just M; Morawska J; Racino A; Hoffman J; Barańska M; Kowalczyk MM; Pietruszewska W Otolaryngol Pol; 2021 Sep; 75(6):1-10. PubMed ID: 35175220 [TBL] [Abstract][Full Text] [Related]
6. A Deep Learning Approach for Quantifying Vocal Fold Dynamics During Connected Speech Using Laryngeal High-Speed Videoendoscopy. Yousef AM; Deliyski DD; Zacharias SRC; de Alarcon A; Orlikoff RF; Naghibolhosseini M J Speech Lang Hear Res; 2022 Jun; 65(6):2098-2113. PubMed ID: 35605603 [TBL] [Abstract][Full Text] [Related]
7. Laryngeal High-Speed Videoendoscopy: Sensitivity of Objective Parameters towards Recording Frame Rate. Schützenberger A; Kunduk M; Döllinger M; Alexiou C; Dubrovskiy D; Semmler M; Seger A; Bohr C Biomed Res Int; 2016; 2016():4575437. PubMed ID: 27990428 [TBL] [Abstract][Full Text] [Related]
8. What have we learned about laryngeal physiology from high-speed digital videoendoscopy? Hertegård S Curr Opin Otolaryngol Head Neck Surg; 2005 Jun; 13(3):152-6. PubMed ID: 15908812 [TBL] [Abstract][Full Text] [Related]
9. Biomechanical simulation of vocal fold dynamics in adults based on laryngeal high-speed videoendoscopy. Döllinger M; Gómez P; Patel RR; Alexiou C; Bohr C; Schützenberger A PLoS One; 2017; 12(11):e0187486. PubMed ID: 29121085 [TBL] [Abstract][Full Text] [Related]
10. Temporal Segmentation for Laryngeal High-Speed Videoendoscopy in Connected Speech. Naghibolhosseini M; Deliyski DD; Zacharias SRC; de Alarcon A; Orlikoff RF J Voice; 2018 Mar; 32(2):256.e1-256.e12. PubMed ID: 28647431 [TBL] [Abstract][Full Text] [Related]
11. Preprocessing techniques for high-speed videoendoscopy analysis. Ikuma T; Kunduk M; McWhorter AJ J Voice; 2013 Jul; 27(4):500-5. PubMed ID: 23490125 [TBL] [Abstract][Full Text] [Related]
12. Kinematic measurements of the vocal-fold displacement waveform in typical children and adult populations: quantification of high-speed endoscopic videos. Patel R; Donohue KD; Unnikrishnan H; Kryscio RJ J Speech Lang Hear Res; 2015 Apr; 58(2):227-40. PubMed ID: 25652615 [TBL] [Abstract][Full Text] [Related]
13. Real-time Simultaneous DKG and 2D DKG Using High-speed Digital Camera. Kang DH; Wang SG; Park HJ; Lee JC; Jeon GR; Choi IS; Kim SJ; Shin BJ J Voice; 2017 Mar; 31(2):247.e1-247.e7. PubMed ID: 27839706 [TBL] [Abstract][Full Text] [Related]
14. Intersegmenter Variability in High-Speed Laryngoscopy-Based Glottal Area Waveform Measures. Maryn Y; Verguts M; Demarsin H; van Dinther J; Gomez P; Schlegel P; Döllinger M Laryngoscope; 2020 Nov; 130(11):E654-E661. PubMed ID: 31840827 [TBL] [Abstract][Full Text] [Related]
15. Flexible Fiber-Optic High-Speed Imaging of Vocal Fold Vibration: A Preliminary Report. Woo P; Baxter P J Voice; 2017 Mar; 31(2):175-181. PubMed ID: 28325351 [TBL] [Abstract][Full Text] [Related]
16. In Vivo Automatic and Quantitative Measurement of Adult Human Larynx and Vocal Fold Images. Kuo CJ; Lin CS; Chiang KY; Barman J; Liu SC J Voice; 2023 Sep; 37(5):764-771. PubMed ID: 34175171 [TBL] [Abstract][Full Text] [Related]
17. Fully automatic segmentation of glottis and vocal folds in endoscopic laryngeal high-speed videos using a deep Convolutional LSTM Network. Fehling MK; Grosch F; Schuster ME; Schick B; Lohscheller J PLoS One; 2020; 15(2):e0227791. PubMed ID: 32040514 [TBL] [Abstract][Full Text] [Related]
18. OpenHSV: an open platform for laryngeal high-speed videoendoscopy. Kist AM; Dürr S; Schützenberger A; Döllinger M Sci Rep; 2021 Jul; 11(1):13760. PubMed ID: 34215788 [TBL] [Abstract][Full Text] [Related]
19. A Spatiotemporal Approach to the Objective Analysis of Initiation and Termination of Vocal-fold Oscillation With High-speed Videoendoscopy. Ikuma T; Kunduk M; Fink D; McWhorter AJ J Voice; 2016 Nov; 30(6):756.e21-756.e30. PubMed ID: 26654851 [TBL] [Abstract][Full Text] [Related]
20. Control of the glottal configuration in ex vivo human models: quantitative anatomy for clinical and experimental practices. Lagier A; Guenoun D; Legou T; Espesser R; Giovanni A; Champsaur P Surg Radiol Anat; 2017 Mar; 39(3):257-262. PubMed ID: 27600801 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]