These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 31181216)

  • 1. The role of the musculoskeletal system in post-burn hypermetabolism.
    Klein GL
    Metabolism; 2019 Aug; 97():81-86. PubMed ID: 31181216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypermetabolism and hypercatabolism of skeletal muscle accompany mitochondrial stress following severe burn trauma.
    Ogunbileje JO; Porter C; Herndon DN; Chao T; Abdelrahman DR; Papadimitriou A; Chondronikola M; Zimmers TA; Reidy PT; Rasmussen BB; Sidossis LS
    Am J Physiol Endocrinol Metab; 2016 Aug; 311(2):E436-48. PubMed ID: 27382037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mouse models in burns research: Characterisation of the hypermetabolic response to burn injury.
    Hew JJ; Parungao RJ; Shi H; Tsai KH; Kim S; Ma D; Malcolm J; Li Z; Maitz PK; Wang Y
    Burns; 2020 May; 46(3):663-674. PubMed ID: 31606314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Role of Bone Secreted Factors in Burn-Induced Muscle Cachexia.
    Klein GL
    Curr Osteoporos Rep; 2018 Feb; 16(1):26-31. PubMed ID: 29344793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Burn-induced hypermetabolism and skeletal muscle dysfunction.
    Knuth CM; Auger C; Jeschke MG
    Am J Physiol Cell Physiol; 2021 Jul; 321(1):C58-C71. PubMed ID: 33909503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is there a difference in clinical outcomes, inflammation, and hypermetabolism between scald and flame burn?
    Kraft R; Kulp GA; Herndon DN; Emdad F; Williams FN; Hawkins HK; Leonard KR; Jeschke MG
    Pediatr Crit Care Med; 2011 Nov; 12(6):e275-81. PubMed ID: 21297515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Burn injury and restoration of muscle function.
    Klein GL
    Bone; 2020 Mar; 132():115194. PubMed ID: 31863962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inflammatory and protein metabolism signaling responses in human skeletal muscle after burn injury.
    Merritt EK; Cross JM; Bamman MM
    J Burn Care Res; 2012; 33(2):291-7. PubMed ID: 22079905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The calcium-sensing receptor as a mediator of inflammation.
    Klein GL; Castro SM; Garofalo RP
    Semin Cell Dev Biol; 2016 Jan; 49():52-6. PubMed ID: 26303192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence supporting a role of glucocorticoids in short-term bone loss in burned children.
    Klein GL; Bi LX; Sherrard DJ; Beavan SR; Ireland D; Compston JE; Williams WG; Herndon DN
    Osteoporos Int; 2004 Jun; 15(6):468-74. PubMed ID: 15205718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nutrition and anabolic pharmacotherapies in the care of burn patients.
    Abdullahi A; Jeschke MG
    Nutr Clin Pract; 2014 Oct; 29(5):621-30. PubMed ID: 25606644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of ketoconazole on post-burn inflammation, hypermetabolism and clinical outcomes.
    Jeschke MG; Williams FN; Finnerty CC; Rodriguez NA; Kulp GA; Ferrando A; Norbury WB; Suman OE; Kraft R; Branski LK; Al-mousawi AM; Herndon DN
    PLoS One; 2012; 7(5):e35465. PubMed ID: 22606232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activities of nonlysosomal proteolytic systems in skeletal and cardiac muscle during burn-induced hypermetabolism.
    Wong YM; La Porte HM; Szilagyi A; Bach HH; Ke-He L; Kennedy RH; Gamelli RL; Shankar R; Majetschak M
    J Burn Care Res; 2014; 35(4):319-27. PubMed ID: 24879398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large animal models of thermal injury.
    Aijaz A; Vinaik R; Jeschke MG
    Methods Cell Biol; 2022; 168():191-219. PubMed ID: 35366983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preliminary evidence of early bone resorption in a sheep model of acute burn injury: an observational study.
    Klein GL; Xie Y; Qin YX; Lin L; Hu M; Enkhbaatar P; Bonewald LF
    J Bone Miner Metab; 2014 Mar; 32(2):136-41. PubMed ID: 23784552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ER stress and subsequent activated calpain play a pivotal role in skeletal muscle wasting after severe burn injury.
    Ma L; Chu W; Chai J; Shen C; Li D; Wang X
    PLoS One; 2017; 12(10):e0186128. PubMed ID: 29028830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Burn injury causes mitochondrial dysfunction in skeletal muscle.
    Padfield KE; Astrakas LG; Zhang Q; Gopalan S; Dai G; Mindrinos MN; Tompkins RG; Rahme LG; Tzika AA
    Proc Natl Acad Sci U S A; 2005 Apr; 102(15):5368-73. PubMed ID: 15809440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-Term Skeletal Muscle Mitochondrial Dysfunction is Associated with Hypermetabolism in Severely Burned Children.
    Porter C; Herndon DN; Børsheim E; Bhattarai N; Chao T; Reidy PT; Rasmussen BB; Andersen CR; Suman OE; Sidossis LS
    J Burn Care Res; 2016; 37(1):53-63. PubMed ID: 26361327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pathophysiological Response to Burn Injury in Adults.
    Stanojcic M; Abdullahi A; Rehou S; Parousis A; Jeschke MG
    Ann Surg; 2018 Mar; 267(3):576-584. PubMed ID: 29408836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Burn size determines the inflammatory and hypermetabolic response.
    Jeschke MG; Mlcak RP; Finnerty CC; Norbury WB; Gauglitz GG; Kulp GA; Herndon DN
    Crit Care; 2007; 11(4):R90. PubMed ID: 17716366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.