These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

477 related articles for article (PubMed ID: 31181263)

  • 1. Magnesium matrix nanocomposites for orthopedic applications: A review from mechanical, corrosion, and biological perspectives.
    Shahin M; Munir K; Wen C; Li Y
    Acta Biomater; 2019 Sep; 96():1-19. PubMed ID: 31181263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spinodal Zr-Nb alloys with ultrahigh elastic admissible strain and low magnetic susceptibility for orthopedic applications.
    Hua Z; Zhang D; Guo L; Lin J; Li Y; Wen C
    Acta Biomater; 2024 Aug; 184():444-460. PubMed ID: 38897338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Current status and perspectives of zinc-based absorbable alloys for biomedical applications.
    Hernández-Escobar D; Champagne S; Yilmazer H; Dikici B; Boehlert CJ; Hermawan H
    Acta Biomater; 2019 Oct; 97():1-22. PubMed ID: 31351253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of fabrication and processing technology on the biodegradability of magnesium nanocomposites.
    Ma C; Chen L; Xu J; Fehrenbacher A; Li Y; Pfefferkorn FE; Duffie NA; Zheng J; Li X
    J Biomed Mater Res B Appl Biomater; 2013 Jul; 101(5):870-7. PubMed ID: 23359493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strength retention, corrosion control and biocompatibility of Mg-Zn-Si/HA nanocomposites.
    Parande G; Manakari V; Prasadh S; Chauhan D; Rahate S; Wong R; Gupta M
    J Mech Behav Biomed Mater; 2020 Mar; 103():103584. PubMed ID: 32090915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation on mechanical properties of AZ31B magnesium alloy manufactured by stir casting process.
    Thakur B; Barve S; Pesode P
    J Mech Behav Biomed Mater; 2023 Feb; 138():105641. PubMed ID: 36565692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface characterization and cytotoxicity response of biodegradable magnesium alloys.
    Pompa L; Rahman ZU; Munoz E; Haider W
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():761-768. PubMed ID: 25687006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [RESEARCH PROGRESS OF MAGNESIUM AND MAGNESIUM ALLOYS IMPLANTS IN ORTHOPEDICS].
    Yang J; Xu Y; He X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Dec; 30(12):1562-1566. PubMed ID: 29786352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradable magnesium-based alloys for biomedical applications: The role of critical alloying elements.
    Chen Y; Dou J; Yu H; Chen C
    J Biomater Appl; 2019 May; 33(10):1348-1372. PubMed ID: 30854910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium phosphate coatings on magnesium alloys for biomedical applications: a review.
    Shadanbaz S; Dias GJ
    Acta Biomater; 2012 Jan; 8(1):20-30. PubMed ID: 22040686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microstructures, mechanical properties, and degradation behaviors of heat-treated Mg-Sr alloys as potential biodegradable implant materials.
    Wang Y; Tie D; Guan R; Wang N; Shang Y; Cui T; Li J
    J Mech Behav Biomed Mater; 2018 Jan; 77():47-57. PubMed ID: 28888933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Not Available].
    Liu D; Xu G; Jamali SS; Zhao Y; Chen M; Jurak T
    Bioelectrochemistry; 2019 Oct; 129():106-115. PubMed ID: 31153125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of biodegradable Mg-Ca alloy sheets with enhanced strength and corrosion properties through the refinement and uniform dispersion of the Mg₂Ca phase by high-ratio differential speed rolling.
    Seong JW; Kim WJ
    Acta Biomater; 2015 Jan; 11():531-42. PubMed ID: 25246310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Security assessment of magnesium alloys used as biodegradable implant material.
    Sun X; Cao ZY; Liu JG; Feng C
    Biomed Mater Eng; 2015; 26 Suppl 1():S119-27. PubMed ID: 26405877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradable magnesium alloys as temporary orthopaedic implants: a review.
    Kamrani S; Fleck C
    Biometals; 2019 Apr; 32(2):185-193. PubMed ID: 30659451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of composition on in vitro degradability of Ti-Mg metal-metal composites.
    Ouyang S; Liu Y; Huang Q; Gan Z; Tang H
    Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110327. PubMed ID: 31761167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A surface-engineered multifunctional TiO
    Lin Z; Wu S; Liu X; Qian S; Chu PK; Zheng Y; Cheung KMC; Zhao Y; Yeung KWK
    Acta Biomater; 2019 Nov; 99():495-513. PubMed ID: 31518705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical, corrosion, and biocompatibility properties of Mg-Zr-Sr-Sc alloys for biodegradable implant applications.
    Munir K; Lin J; Wen C; Wright PFA; Li Y
    Acta Biomater; 2020 Jan; 102():493-507. PubMed ID: 31811958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical, corrosion and biocompatibility behaviour of Mg-3Zn-HA biodegradable composites for orthopaedic fixture accessories.
    Jaiswal S; Kumar RM; Gupta P; Kumaraswamy M; Roy P; Lahiri D
    J Mech Behav Biomed Mater; 2018 Feb; 78():442-454. PubMed ID: 29232643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of rare-earth oxide reinforced magnesium nanocomposites for orthopaedic applications: A mechanical/immersion/biocompatibility perspective.
    Kujur MS; Manakari V; Parande G; Prasadh S; Wong R; Mallick A; Gupta M
    J Mech Behav Biomed Mater; 2021 Feb; 114():104162. PubMed ID: 33144044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.