These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 31181541)

  • 1. Electrochemically triggered degradation of silicon membranes for smart on-demand transient electronic devices.
    Chen Y; Wang H; Zhang Y; Li R; Chen C; Zhang H; Tang S; Liu S; Chen X; Wu H; Lv R; Sheng X; Zhang P; Wang S; Yin L
    Nanotechnology; 2019 Sep; 30(39):394002. PubMed ID: 31181541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards Transient Electronics through Heat Triggered Shattering of Off-the-Shelf Electronic Chips.
    Pandey S; Mastrangelo C
    Micromachines (Basel); 2022 Jan; 13(2):. PubMed ID: 35208366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advanced Materials and Devices for Bioresorbable Electronics.
    Kang SK; Koo J; Lee YK; Rogers JA
    Acc Chem Res; 2018 May; 51(5):988-998. PubMed ID: 29664613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation Study of Thin-Film Silicon Structures in a Cell Culture Medium.
    Wang H; Tian J; Lu B; Xie Y; Sun P; Yin L; Wang Y; Sheng X
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enabling Transient Electronics with Degradation on Demand via Light-Responsive Encapsulation of a Hydrogel-Oxide Bilayer.
    Zhong S; Ji X; Song L; Zhang Y; Zhao R
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):36171-36176. PubMed ID: 30272434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geometrical and Chemical-Dependent Hydrolysis Mechanisms of Silicon Nanomembranes for Biodegradable Electronics.
    Wang L; Gao Y; Dai F; Kong D; Wang H; Sun P; Shi Z; Sheng X; Xu B; Yin L
    ACS Appl Mater Interfaces; 2019 May; 11(19):18013-18023. PubMed ID: 31010291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Materials and processing approaches for foundry-compatible transient electronics.
    Chang JK; Fang H; Bower CA; Song E; Yu X; Rogers JA
    Proc Natl Acad Sci U S A; 2017 Jul; 114(28):E5522-E5529. PubMed ID: 28652373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Moisture-triggered physically transient electronics.
    Gao Y; Zhang Y; Wang X; Sim K; Liu J; Chen J; Feng X; Xu H; Yu C
    Sci Adv; 2017 Sep; 3(9):e1701222. PubMed ID: 28879237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct light pattern integration of low-temperature solution-processed all-oxide flexible electronics.
    Rim YS; Chen H; Liu Y; Bae SH; Kim HJ; Yang Y
    ACS Nano; 2014 Sep; 8(9):9680-6. PubMed ID: 25198530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Performance Carbon Nanotube-Based Transient Complementary Electronics.
    Xia F; Xia T; Xiang L; Liu F; Jia W; Liang X; Hu Y
    ACS Appl Mater Interfaces; 2022 Mar; 14(10):12515-12522. PubMed ID: 35230800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-Dimensional Printed Poly(vinyl alcohol) Substrate with Controlled On-Demand Degradation for Transient Electronics.
    Yoon J; Han J; Choi B; Lee Y; Kim Y; Park J; Lim M; Kang MH; Kim DH; Kim DM; Kim S; Choi SJ
    ACS Nano; 2018 Jun; 12(6):6006-6012. PubMed ID: 29791138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradable Electronic Systems in 3D, Heterogeneously Integrated Formats.
    Chang JK; Chang HP; Guo Q; Koo J; Wu CI; Rogers JA
    Adv Mater; 2018 Mar; 30(11):. PubMed ID: 29349821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Step toward High-Energy Silicon-Based Thin Film Lithium Ion Batteries.
    Reyes Jiménez A; Klöpsch R; Wagner R; Rodehorst UC; Kolek M; Nölle R; Winter M; Placke T
    ACS Nano; 2017 May; 11(5):4731-4744. PubMed ID: 28437078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A physically transient form of silicon electronics.
    Hwang SW; Tao H; Kim DH; Cheng H; Song JK; Rill E; Brenckle MA; Panilaitis B; Won SM; Kim YS; Song YM; Yu KJ; Ameen A; Li R; Su Y; Yang M; Kaplan DL; Zakin MR; Slepian MJ; Huang Y; Omenetto FG; Rogers JA
    Science; 2012 Sep; 337(6102):1640-4. PubMed ID: 23019646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accelerable Self-Sintering of Solvent-Free Molybdenum/Wax Biodegradable Composites for Multimodally Transient Electronics.
    Wei Z; Ma X; Zhao H; Wu X; Guo Q
    ACS Appl Mater Interfaces; 2022 Jul; ():. PubMed ID: 35830227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thin film transistors for flexible electronics: contacts, dielectrics and semiconductors.
    Quevedo-Lopez MA; Wondmagegn WT; Alshareef HN; Ramirez-Bon R; Gnade BE
    J Nanosci Nanotechnol; 2011 Jun; 11(6):5532-8. PubMed ID: 21770215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silicon and germanium nanowire electronics: physics of conventional and unconventional transistors.
    Weber WM; Mikolajick T
    Rep Prog Phys; 2017 Jun; 80(6):066502. PubMed ID: 28054936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impermeable Graphene Oxide Protects Silicon from Oxidation.
    Rahpeima S; Dief EM; Ciampi S; Raston CL; Darwish N
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38799-38807. PubMed ID: 34342425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sandwich-lithiation and longitudinal crack in amorphous silicon coated on carbon nanofibers.
    Wang JW; Liu XH; Zhao K; Palmer A; Patten E; Burton D; Mao SX; Suo Z; Huang JY
    ACS Nano; 2012 Oct; 6(10):9158-67. PubMed ID: 22984869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Flexible Hybrid CMOS Inverter Based on Si Nanomembrane and Molybdenum Disulfide.
    Das T; Chen X; Jang H; Oh IK; Kim H; Ahn JH
    Small; 2016 Nov; 12(41):5720-5727. PubMed ID: 27608439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.