BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 31181725)

  • 1. Waterlogging Causes Early Modification in the Physiological Performance, Carotenoids, Chlorophylls, Proline, and Soluble Sugars of Cucumber Plants.
    Barickman TC; Simpson CR; Sams CE
    Plants (Basel); 2019 Jun; 8(6):. PubMed ID: 31181725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Short waterlogging events differently affect morphology and photosynthesis of two cucumber (
    Olorunwa OJ; Adhikari B; Brazel S; Popescu SC; Popescu GV; Barickman TC
    Front Plant Sci; 2022; 13():896244. PubMed ID: 35937378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative RNA-seq based transcriptome profiling of waterlogging response in cucumber hypocotyls reveals novel insights into the de novo adventitious root primordia initiation.
    Xu X; Chen M; Ji J; Xu Q; Qi X; Chen X
    BMC Plant Biol; 2017 Jul; 17(1):129. PubMed ID: 28747176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Screening of cowpea (Vigna unguiculata (L.) Walp.) genotypes for waterlogging tolerance using morpho-physiological traits at early growth stage.
    Olorunwa OJ; Adhikari B; Shi A; Barickman TC
    Plant Sci; 2022 Feb; 315():111136. PubMed ID: 35067306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sugar enhances waterlogging-induced adventitious root formation in cucumber by promoting auxin transport and signalling.
    Qi X; Li Q; Shen J; Qian C; Xu X; Xu Q; Chen X
    Plant Cell Environ; 2020 Jun; 43(6):1545-1557. PubMed ID: 32020637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological, biochemical and molecular responses in four Prunus rootstocks submitted to drought stress.
    Jiménez S; Dridi J; Gutiérrez D; Moret D; Irigoyen JJ; Moreno MA; Gogorcena Y
    Tree Physiol; 2013 Oct; 33(10):1061-75. PubMed ID: 24162335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparable and adaptable strategies to waterlogging stress regulated by adventitious roots between two contrasting species.
    Li D; Cisse EM; Guo L; Zhang J; Miao L; Yang F
    Tree Physiol; 2022 May; 42(5):971-988. PubMed ID: 34875093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptomic, Physiological, and Metabolomic Response of an Alpine Plant,
    Zhang XM; Duan SG; Xia Y; Li JT; Liu LX; Tang M; Tang J; Sun W; Yi Y
    Int J Mol Sci; 2023 Jun; 24(13):. PubMed ID: 37445685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of Non-Destructive Measurements to Identify Cucurbit Species (
    Lin HH; Lin KH; Huang MY; Su YR
    Plants (Basel); 2020 Sep; 9(9):. PubMed ID: 32961858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photosynthesis, nutrient accumulation and growth of two Betula species exposed to waterlogging in late dormancy and in the early growing season.
    Wang AF; Roitto M; Lehto T; Sutinen S; Heinonen J; Zhang G; Repo T
    Tree Physiol; 2017 Jun; 37(6):767-778. PubMed ID: 28338895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screening methods for waterlogging tolerance in lucerne: comparative analysis of waterlogging effects on chlorophyll fluorescence, photosynthesis, biomass and chlorophyll content.
    Smethurst CF; Shabala S
    Funct Plant Biol; 2003 Mar; 30(3):335-343. PubMed ID: 32689016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Waterlogging of Winter Crops at Early and Late Stages: Impacts on Leaf Physiology, Growth and Yield.
    Ploschuk RA; Miralles DJ; Colmer TD; Ploschuk EL; Striker GG
    Front Plant Sci; 2018; 9():1863. PubMed ID: 30619425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between morphological and physiological responses to waterlogging and salinity in Sporobolus virginicus (L.) Kunth.
    Naidoo G; Mundree SG
    Oecologia; 1993 Mar; 93(3):360-366. PubMed ID: 28313436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenomic networks reveal largely independent root and shoot adjustment in waterlogged plants of Lotus japonicus.
    Striker GG; Casas C; Manzur ME; Ploschuk RA; Casal JJ
    Plant Cell Environ; 2014 Oct; 37(10):2278-93. PubMed ID: 24393069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effects of waterlogging on ecophysiological characteristics of Salix variegate seedlings].
    Chen FQ; Guo CY; Wang CH; Xu WN; Fan DY; Xie ZQ
    Ying Yong Sheng Tai Xue Bao; 2008 Jun; 19(6):1229-33. PubMed ID: 18808013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative Proteomic Analysis Provides Insight into the Key Proteins Involved in Cucumber (
    Xu X; Ji J; Ma X; Xu Q; Qi X; Chen X
    Front Plant Sci; 2016; 7():1515. PubMed ID: 27790230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of exogenous calcium on cucumber fruit quality, photosynthesis, chlorophyll fluorescence, and fast chlorophyll fluorescence during the fruiting period under hypoxic stress.
    He L; Yu L; Li B; Du N; Guo S
    BMC Plant Biol; 2018 Sep; 18(1):180. PubMed ID: 30180797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological response of cucumber (Cucumis sativus L.) leaves to polystyrene nanoplastics pollution.
    Li Z; Li R; Li Q; Zhou J; Wang G
    Chemosphere; 2020 Sep; 255():127041. PubMed ID: 32679635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissecting the below- and aboveground specific responses of two waterlogging-tolerant arbor species to nutrient supply under waterlogging conditions.
    Li D; Miao L; Cisse EM; Li L; Chen B; Yang F
    Tree Physiol; 2023 Mar; 43(3):390-403. PubMed ID: 36300499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Waterlogging during the reproductive growth stage causes physiological and biochemical modifications in the leaves of cowpea (Vigna unguiculata L.) genotypes with contrasting tolerance.
    Olorunwa OJ; Adhikari B; Brazel S; Popescu SC; Popescu GV; Shi A; Barickman TC
    Plant Physiol Biochem; 2022 Nov; 190():133-144. PubMed ID: 36115267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.