These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
579 related articles for article (PubMed ID: 31181727)
61. Interplay between orphan nuclear receptors and androgen receptor-dependent or-independent growth signalings in prostate cancer. Wang Y; Gao W; Li Y; Chow ST; Xie W; Zhang X; Zhou J; Chan FL Mol Aspects Med; 2021 Apr; 78():100921. PubMed ID: 33121737 [TBL] [Abstract][Full Text] [Related]
62. Androgen receptor targeting drugs in castration-resistant prostate cancer and mechanisms of resistance. Crona DJ; Milowsky MI; Whang YE Clin Pharmacol Ther; 2015 Dec; 98(6):582-9. PubMed ID: 26331358 [TBL] [Abstract][Full Text] [Related]
63. PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer. Raina K; Lu J; Qian Y; Altieri M; Gordon D; Rossi AM; Wang J; Chen X; Dong H; Siu K; Winkler JD; Crew AP; Crews CM; Coleman KG Proc Natl Acad Sci U S A; 2016 Jun; 113(26):7124-9. PubMed ID: 27274052 [TBL] [Abstract][Full Text] [Related]
64. [The concept and mechanisms of castration-resistant prostate cancer]. Naito S; Shiota M Nihon Rinsho; 2014 Dec; 72(12):2090-4. PubMed ID: 25518339 [TBL] [Abstract][Full Text] [Related]
65. Validation of histone deacetylase 3 as a therapeutic target in castration-resistant prostate cancer. McLeod AB; Stice JP; Wardell SE; Alley HM; Chang CY; McDonnell DP Prostate; 2018 Mar; 78(4):266-277. PubMed ID: 29243324 [TBL] [Abstract][Full Text] [Related]
66. Androgen receptor cofactors in prostate cancer: potential therapeutic targets of castration-resistant prostate cancer. Shiota M; Yokomizo A; Fujimoto N; Naito S Curr Cancer Drug Targets; 2011 Sep; 11(7):870-81. PubMed ID: 21762076 [TBL] [Abstract][Full Text] [Related]
67. CD44 and CD133 protein expression might serve as a prognostic factor for early occurrence castration-resistant prostate cancer. Dwina Y; Zaid LSM; Saraswati M; Rachmadi L; Kekalih A; Rahadiani N; Louisa M; Agustina H; Mochtar CA; Hamid ARAH Prostate; 2024 Jun; 84(8):738-746. PubMed ID: 38528654 [TBL] [Abstract][Full Text] [Related]
68. Prostate cancer castrate resistant progression usage of non-canonical androgen receptor signaling and ketone body fuel. Labanca E; Bizzotto J; Sanchis P; Anselmino N; Yang J; Shepherd PDA; Paez A; Antico-Arciuch V; Lage-Vickers S; Hoang AG; Tang X; Raso MG; Titus M; Efstathiou E; Cotignola J; Araujo J; Logothetis C; Vazquez E; Navone N; Gueron G Oncogene; 2021 Nov; 40(44):6284-6298. PubMed ID: 34584218 [TBL] [Abstract][Full Text] [Related]
70. Co-targeting SKP2 and KDM5B inhibits prostate cancer progression by abrogating AKT signaling with induction of senescence and apoptosis. Brown LK; Kanagasabai T; Li G; Celada SI; Rumph JT; Adunyah SE; Stewart LV; Chen Z Prostate; 2024 Jun; 84(9):877-887. PubMed ID: 38605532 [TBL] [Abstract][Full Text] [Related]
71. Interactions between androgen receptor signaling and other molecular pathways in prostate cancer progression: Current and future clinical implications. Pisano C; Tucci M; Di Stefano RF; Turco F; Scagliotti GV; Di Maio M; Buttigliero C Crit Rev Oncol Hematol; 2021 Jan; 157():103185. PubMed ID: 33341506 [TBL] [Abstract][Full Text] [Related]
72. Aspartate β-hydroxylase targeting in castration-resistant prostate cancer modulates the NOTCH/HIF1α/GSK3β crosstalk. Barboro P; Benelli R; Tosetti F; Costa D; Capaia M; Astigiano S; Venè R; Poggi A; Ferrari N Carcinogenesis; 2020 Sep; 41(9):1246-1252. PubMed ID: 32525968 [TBL] [Abstract][Full Text] [Related]
73. Orphan nuclear receptors as regulators of intratumoral androgen biosynthesis in castration-resistant prostate cancer. Zhou J; Wang Y; Wu D; Wang S; Chen Z; Xiang S; Chan FL Oncogene; 2021 Apr; 40(15):2625-2634. PubMed ID: 33750894 [TBL] [Abstract][Full Text] [Related]
74. Molecular and cellular mechanisms of castration resistant prostate cancer. Huang Y; Jiang X; Liang X; Jiang G Oncol Lett; 2018 May; 15(5):6063-6076. PubMed ID: 29616091 [TBL] [Abstract][Full Text] [Related]
75. Cancer-driven IgG promotes the development of prostate cancer though the SOX2-CIgG pathway. Qin C; Sheng Z; Huang X; Tang J; Liu Y; Xu T; Qiu X Prostate; 2020 Sep; 80(13):1134-1144. PubMed ID: 32628304 [TBL] [Abstract][Full Text] [Related]
76. Phosphorylation-dependent regulation of SPOP by LIMK2 promotes castration-resistant prostate cancer. Nikhil K; Haymour HS; Kamra M; Shah K Br J Cancer; 2021 Mar; 124(5):995-1008. PubMed ID: 33311589 [TBL] [Abstract][Full Text] [Related]
78. A Tale of Two Signals: AR and WNT in Development and Tumorigenesis of Prostate and Mammary Gland. Pakula H; Xiang D; Li Z Cancers (Basel); 2017 Jan; 9(2):. PubMed ID: 28134791 [TBL] [Abstract][Full Text] [Related]
79. ATM‑JAK‑PD‑L1 signaling pathway inhibition decreases EMT and metastasis of androgen‑independent prostate cancer. Zhang L; Xu LJ; Zhu J; Li J; Xue BX; Gao J; Sun CY; Zang YC; Zhou YB; Yang DR; Shan YX Mol Med Rep; 2018 May; 17(5):7045-7054. PubMed ID: 29568923 [TBL] [Abstract][Full Text] [Related]
80. Interplay of Epidermal Growth Factor Receptor and Signal Transducer and Activator of Transcription 3 in Prostate Cancer: Beyond Androgen Receptor Transactivation. Lin SR; Yeh HL; Liu YN Cancers (Basel); 2021 Jul; 13(14):. PubMed ID: 34298665 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]