BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 31181886)

  • 1. Exploring Reaction Energy Profiles Using the Molecules-in-Molecules Fragmentation-Based Approach.
    Gupta AK; Thapa B; Raghavachari K
    J Chem Theory Comput; 2019 Jul; 15(7):3991-4002. PubMed ID: 31181886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ion cyclotron resonance spectroscopy. Cyclotron double resonance provides a new technique for the study of ion-molecule reaction mechanisms.
    Baldeschwieler JD
    Science; 1968 Jan; 159(3812):263-73. PubMed ID: 4863791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecules-in-Molecules: An Extrapolated Fragment-Based Approach for Accurate Calculations on Large Molecules and Materials.
    Mayhall NJ; Raghavachari K
    J Chem Theory Comput; 2011 May; 7(5):1336-43. PubMed ID: 26610128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fragment-based models for dissociation of strong acids in water: Electrostatic embedding minimizes the dependence on the fragmentation schemes.
    Tripathy V; Raghavachari K
    J Chem Phys; 2023 Sep; 159(12):. PubMed ID: 38127382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling Constants, High Spin, and Broken Symmetry States of Organic Radicals: an Assessment of the Molecules-in-Molecules Fragmentation-Based Method.
    Sadhukhan T; Beckett D; Thapa B; Raghavachari K
    J Chem Theory Comput; 2019 Nov; 15(11):5998-6009. PubMed ID: 31625737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redistributed charge and dipole schemes for combined quantum mechanical and molecular mechanical calculations.
    Lin H; Truhlar DG
    J Phys Chem A; 2005 May; 109(17):3991-4004. PubMed ID: 16833721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical Study of Protein-Ligand Interactions Using the Molecules-in-Molecules Fragmentation-Based Method.
    Thapa B; Beckett D; Erickson J; Raghavachari K
    J Chem Theory Comput; 2018 Oct; 14(10):5143-5155. PubMed ID: 30265003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of Fragmentation Strategies for Large Proteins Using the Multilayer Molecules-in-Molecules Approach.
    Thapa B; Beckett D; Jovan Jose KV; Raghavachari K
    J Chem Theory Comput; 2018 Mar; 14(3):1383-1394. PubMed ID: 29450992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards accurate ab initio QM/MM calculations of free-energy profiles of enzymatic reactions.
    Rosta E; Klähn M; Warshel A
    J Phys Chem B; 2006 Feb; 110(6):2934-41. PubMed ID: 16471904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deciphering Selectivity in Organic Reactions: A Multifaceted Problem.
    Balcells D; Clot E; Eisenstein O; Nova A; Perrin L
    Acc Chem Res; 2016 May; 49(5):1070-8. PubMed ID: 27152927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The combined fragmentation and systematic molecular fragmentation methods.
    Collins MA; Cvitkovic MW; Bettens RP
    Acc Chem Res; 2014 Sep; 47(9):2776-85. PubMed ID: 24972052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrostatically embedded molecules-in-molecules approach and its application to molecular clusters.
    Tripathy V; Saha A; Raghavachari K
    J Comput Chem; 2021 Apr; 42(10):719-734. PubMed ID: 33586802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gas-Phase Ozone Reactions with a Structurally Diverse Set of Molecules: Barrier Heights and Reaction Energies Evaluated by Coupled Cluster and Density Functional Theory Calculations.
    Trogolo D; Arey JS; Tentscher PR
    J Phys Chem A; 2019 Jan; 123(2):517-536. PubMed ID: 30607948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate prediction of the structure and vibrational spectra of ionic liquid clusters with the generalized energy-based fragmentation approach: critical role of ion-pair-based fragmentation.
    Li Y; Yuan D; Wang Q; Li W; Li S
    Phys Chem Chem Phys; 2018 May; 20(19):13547-13557. PubMed ID: 29726875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring transition state structures for intramolecular pathways by the artificial force induced reaction method.
    Maeda S; Taketsugu T; Morokuma K
    J Comput Chem; 2014 Jan; 35(2):166-73. PubMed ID: 24186858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reaction Dynamics of Cyanohydrins with Hydrosulfide in Water.
    Valleau S; Martínez TJ
    J Phys Chem A; 2019 Aug; 123(33):7210-7217. PubMed ID: 31348667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generalized energy-based fragmentation approach for computing the ground-state energies and properties of large molecules.
    Li W; Li S; Jiang Y
    J Phys Chem A; 2007 Mar; 111(11):2193-9. PubMed ID: 17388268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AROFRAG─A Systematic Approach for Fragmentation of Aromatic Molecules.
    Masoumifeshani E; Korona T
    J Chem Theory Comput; 2024 Feb; 20(3):1078-1095. PubMed ID: 38252847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational Kinetics of Hydroperoxybutylperoxy Isomerizations and Decompositions: A Study of the Effect of Hydrogen Bonding.
    Mohamed SY; Davis AC; Al Rashidi MJ; Sarathy SM
    J Phys Chem A; 2018 Aug; 122(30):6277-6291. PubMed ID: 29983052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reaction path potential for complex systems derived from combined ab initio quantum mechanical and molecular mechanical calculations.
    Lu Z; Yang W
    J Chem Phys; 2004 Jul; 121(1):89-100. PubMed ID: 15260525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.