These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 31181905)

  • 1. Understanding Catalyst Surfaces during Catalysis through Near Ambient Pressure X-ray Photoelectron Spectroscopy.
    Nguyen L; Tao FF; Tang Y; Dou J; Bao XJ
    Chem Rev; 2019 Jun; 119(12):6822-6905. PubMed ID: 31181905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unraveling Catalytic Reaction Mechanism by
    Lian X; Gao J; Ding Y; Liu Y; Chen W
    J Phys Chem Lett; 2022 Sep; 13(35):8264-8277. PubMed ID: 36036437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-ray Photoelectron Spectroscopy Studies of Nanoparticles Dispersed in Static Liquid.
    Nguyen L; Tao PP; Liu H; Al-Hada M; Amati M; Sezen H; Gregoratti L; Tang Y; House SD; Tao FF
    Langmuir; 2018 Aug; 34(33):9606-9616. PubMed ID: 29786441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Operando chemistry of catalyst surfaces during catalysis.
    Dou J; Sun Z; Opalade AA; Wang N; Fu W; Tao FF
    Chem Soc Rev; 2017 Apr; 46(7):2001-2027. PubMed ID: 28358410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions of gaseous molecules with X-ray photons and photoelectrons in AP-XPS study of solid surface in gas phase.
    Tao FF; Nguyen L
    Phys Chem Chem Phys; 2018 Apr; 20(15):9812-9823. PubMed ID: 29589011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-situ observations of catalytic surface reactions with soft x-rays under working conditions.
    Toyoshima R; Kondoh H
    J Phys Condens Matter; 2015 Mar; 27(8):083003. PubMed ID: 25667354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into electrochemical reactions from ambient pressure photoelectron spectroscopy.
    Stoerzinger KA; Hong WT; Crumlin EJ; Bluhm H; Shao-Horn Y
    Acc Chem Res; 2015 Nov; 48(11):2976-83. PubMed ID: 26305627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-situ studies of nanocatalysis.
    Zhang S; Nguyen L; Zhu Y; Zhan S; Tsung CK; Tao FF
    Acc Chem Res; 2013 Aug; 46(8):1731-9. PubMed ID: 23618394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Progress with In Situ Characterization of Interfacial Structures under a Solid-Gas Atmosphere by HP-STM and AP-XPS.
    Zhang H; Sun H; Shen K; Hu J; Hu J; Jiang Z; Song F
    Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31703436
    [No Abstract]   [Full Text] [Related]  

  • 10. Atomic-Scale Observations of Catalyst Structures under Reaction Conditions and during Catalysis.
    Tao FF; Crozier PA
    Chem Rev; 2016 Mar; 116(6):3487-539. PubMed ID: 26955850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transition of surface phase of cobalt oxide during CO oxidation.
    Tang Y; Ma L; Dou J; Andolina CM; Li Y; Ma H; House SD; Zhang X; Yang J; Tao FF
    Phys Chem Chem Phys; 2018 Feb; 20(9):6440-6449. PubMed ID: 29445805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasma-Enhanced Catalytic Synthesis of Ammonia over a Ni/Al
    Wang Y; Craven M; Yu X; Ding J; Bryant P; Huang J; Tu X
    ACS Catal; 2019 Dec; 9(12):10780-10793. PubMed ID: 32064144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactor for tracking catalyst nanoparticles in liquid at high temperature under a high-pressure gas phase with X-ray absorption spectroscopy.
    Nguyen L; Tao FF
    Rev Sci Instrum; 2018 Feb; 89(2):024102. PubMed ID: 29495804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular studies of model surfaces of metals from single crystals to nanoparticles under catalytic reaction conditions. Evolution from prenatal and postmortem studies of catalysts.
    Somorjai GA; Aliaga C
    Langmuir; 2010 Nov; 26(21):16190-203. PubMed ID: 20860409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a reaction cell for in-situ/operando studies of surface of a catalyst under a reaction condition and during catalysis.
    Nguyen L; Tao FF
    Rev Sci Instrum; 2016 Jun; 87(6):064101. PubMed ID: 27370473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Action of bimetallic nanocatalysts under reaction conditions and during catalysis: evolution of chemistry from high vacuum conditions to reaction conditions.
    Tao FF; Zhang S; Nguyen L; Zhang X
    Chem Soc Rev; 2012 Dec; 41(24):7980-93. PubMed ID: 23023152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel in Situ Techniques for Studies of Model Catalysts.
    Lundgren E; Zhang C; Merte LR; Shipilin M; Blomberg S; Hejral U; Zhou J; Zetterberg J; Gustafson J
    Acc Chem Res; 2017 Sep; 50(9):2326-2333. PubMed ID: 28880530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Negative Charging of Au Nanoparticles during Methanol Synthesis from CO
    Abdel-Mageed AM; Klyushin A; Rezvani A; Knop-Gericke A; Schlögl R; Behm RJ
    Angew Chem Int Ed Engl; 2019 Jul; 58(30):10325-10329. PubMed ID: 30980453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 2D and 3D imaging of the gas phase close to an operating model catalyst by planar laser induced fluorescence.
    Blomberg S; Zhou J; Gustafson J; Zetterberg J; Lundgren E
    J Phys Condens Matter; 2016 Nov; 28(45):453002. PubMed ID: 27619414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface chemistry of 2-propanol and O
    Diulus JT; Elzein R; Addou R; Herman GS
    J Chem Phys; 2020 Feb; 152(5):054713. PubMed ID: 32035445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.