BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 31181908)

  • 1. A New Methodology to Create Polymeric Nanocarriers Containing Hydrophilic Low Molecular-Weight Drugs: A Green Strategy Providing a Very High Drug Loading.
    Villamizar-Sarmiento MG; Molina-Soto EF; Guerrero J; Shibue T; Nishide H; Moreno-Villoslada I; Oyarzun-Ampuero FA
    Mol Pharm; 2019 Jul; 16(7):2892-2901. PubMed ID: 31181908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The key role of the drug self-aggregation ability to obtain optimal nanocarriers based on aromatic-aromatic drug-polymer interactions.
    Villamizar-Sarmiento MG; Guerrero J; Moreno-Villoslada I; Oyarzun-Ampuero FA
    Eur J Pharm Biopharm; 2021 Sep; 166():19-29. PubMed ID: 34052430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilization of hydrophilic low molecular-weight molecules in nanoparticles of chitosan/poly(sodium 4-styrenesulfonate) assisted by aromatic-aromatic interactions.
    Fuenzalida JP; Flores ME; Móniz I; Feijoo M; Goycoolea F; Nishide H; Moreno-Villoslada I
    J Phys Chem B; 2014 Aug; 118(32):9782-91. PubMed ID: 25054833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new drug nanocarrier consisting of polyarginine and hyaluronic acid.
    Oyarzun-Ampuero FA; Goycoolea FM; Torres D; Alonso MJ
    Eur J Pharm Biopharm; 2011 Sep; 79(1):54-7. PubMed ID: 21549838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH-sensitive micelles self-assembled from polymer brush (PAE-
    Huang X; Liao W; Zhang G; Kang S; Zhang CY
    Int J Nanomedicine; 2017; 12():2215-2226. PubMed ID: 28356738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of l-Tyrosine-Based Enzyme-Responsive Amphiphilic Poly(ester-urethane) Nanocarriers for Multiple Drug Delivery to Cancer Cells.
    Aluri R; Jayakannan M
    Biomacromolecules; 2017 Jan; 18(1):189-200. PubMed ID: 28064504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergy between polymer crystallinity and nanoparticles size for payloads release.
    Niyom Y; Phakkeeree T; Flood A; Crespy D
    J Colloid Interface Sci; 2019 Aug; 550():139-146. PubMed ID: 31063872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Factorial Design Based Multivariate Modeling and Optimization of Tunable Bioresponsive Arginine Grafted Poly(cystaminebis(acrylamide)-diaminohexane) Polymeric Matrix Based Nanocarriers.
    Yang R; Nam K; Kim SW; Turkson J; Zou Y; Zuo YY; Haware RV; Chougule MB
    Mol Pharm; 2017 Jan; 14(1):252-263. PubMed ID: 28043134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comb-like amphiphilic copolymers bearing acetal-functionalized backbones with the ability of acid-triggered hydrophobic-to-hydrophilic transition as effective nanocarriers for intracellular release of curcumin.
    Zhao J; Wang H; Liu J; Deng L; Liu J; Dong A; Zhang J
    Biomacromolecules; 2013 Nov; 14(11):3973-84. PubMed ID: 24107101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidation-Responsive Polymer-Drug Conjugates with a Phenylboronic Ester Linker.
    Qiu FY; Zhang M; Ji R; Du FS; Li ZC
    Macromol Rapid Commun; 2015 Nov; 36(22):2012-8. PubMed ID: 26297612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and characterization of rod-like chitosan-quinoline nanoparticles as pH-responsive nanocarriers for quercetin delivery.
    Rahimi S; Khoee S; Ghandi M
    Int J Biol Macromol; 2019 May; 128():279-289. PubMed ID: 30695722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of new chitosan/carrageenan nanoparticles for drug delivery applications.
    Grenha A; Gomes ME; Rodrigues M; Santo VE; Mano JF; Neves NM; Reis RL
    J Biomed Mater Res A; 2010 Mar; 92(4):1265-72. PubMed ID: 19322874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sugar-based amphiphilic polymers for biomedical applications: from nanocarriers to therapeutics.
    Gu L; Faig A; Abdelhamid D; Uhrich K
    Acc Chem Res; 2014 Oct; 47(10):2867-77. PubMed ID: 25141069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of aqueous ternary nanomatrix films: A novel 'green' strategy for the delivery of poorly soluble drugs.
    Kola-Mustapha AT; Armitage D; Abioye AO
    Int J Pharm; 2016 Dec; 515(1-2):616-631. PubMed ID: 27825861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and application of a polymer with pH/temperature-responsive targeting.
    Kou Z; Dou D; Mo H; Ji J; Lan L; Lan X; Zhang J; Lan P
    Int J Biol Macromol; 2020 Dec; 165(Pt A):995-1001. PubMed ID: 33022350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction and comparison of different nanocarriers for co-delivery of cisplatin and curcumin: A synergistic combination nanotherapy for cervical cancer.
    Li C; Ge X; Wang L
    Biomed Pharmacother; 2017 Feb; 86():628-636. PubMed ID: 28027539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation, characterization, drug release and computational modelling studies of antibiotics loaded amorphous chitin nanoparticles.
    Gayathri NK; Aparna V; Maya S; Biswas R; Jayakumar R; Mohan CG
    Carbohydr Polym; 2017 Dec; 177():67-76. PubMed ID: 28962797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pH sensitive surfactant-stabilized Fe
    Dutta B; Shetake NG; Barick BK; Barick KC; Pandey BN; Priyadarsini KI; Hassan PA
    Colloids Surf B Biointerfaces; 2018 Feb; 162():163-171. PubMed ID: 29190467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intermolecular interaction and morphology investigation of drug loaded ABA-triblock copolymers with different hydrophilic/lipophilic ratios.
    Khoee S; Rahimi HB
    Bioorg Med Chem; 2010 Oct; 18(20):7283-90. PubMed ID: 20833053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymeric vesicles: from drug carriers to nanoreactors and artificial organelles.
    Tanner P; Baumann P; Enea R; Onaca O; Palivan C; Meier W
    Acc Chem Res; 2011 Oct; 44(10):1039-49. PubMed ID: 21608994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.