These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 31181938)

  • 1. Adsorption Features of Formaldehyde on TiO
    Wang H; Zhao X; Huang C; Jin X; Wei D; Dai D; Ma Z; Li WX; Yang X
    J Phys Chem Lett; 2019 Jun; 10(12):3352-3358. PubMed ID: 31181938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic reaction mechanism of formaldehyde oxidation by oxygen species over Pt/TiO
    Ding J; Yang Y; Liu J; Wang Z
    Chemosphere; 2020 Jun; 248():125980. PubMed ID: 32004886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of hydroxyl groups on the adsorption of HCHO on TiO2-B(100) surface by first-principles study.
    Liu H; Liew KM; Pan C
    Phys Chem Chem Phys; 2013 Mar; 15(11):3866-80. PubMed ID: 23399983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the photocatalytic conversion mechanism of gaseous formaldehyde degradation on TiO
    Li X; Li H; Huang Y; Cao J; Huang T; Li R; Zhang Q; Lee SC; Ho W
    J Hazard Mater; 2022 Feb; 424(Pt A):127217. PubMed ID: 34879541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption of formaldehyde on Pt(111) and Pt(100) electrodes: cyclic voltammetry and scanning tunneling microscopy.
    Mai CF; Shue CH; Yang YC; Ou Yang LY; Yau SL; Itaya K
    Langmuir; 2005 May; 21(11):4964-70. PubMed ID: 15896037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of surface and subsurface point defects for chemical model studies on TiO2: a first-principles theoretical study of formaldehyde bonding on rutile TiO2(110).
    Haubrich J; Kaxiras E; Friend CM
    Chemistry; 2011 Apr; 17(16):4496-506. PubMed ID: 21433119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CO2 adsorption on TiO2(110) rutile: insight from dispersion-corrected density functional theory calculations and scanning tunneling microscopy experiments.
    Sorescu DC; Lee J; Al-Saidi WA; Jordan KD
    J Chem Phys; 2011 Mar; 134(10):104707. PubMed ID: 21405184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NO adsorption and diffusion on hydroxylated rutile TiO2(110).
    Yu YY; Diebold U; Gong XQ
    Phys Chem Chem Phys; 2015 Oct; 17(40):26594-8. PubMed ID: 26395976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of CO2 with oxygen adatoms on rutile TiO2(110).
    Lin X; Wang ZT; Lyubinetsky I; Kay BD; Dohnálek Z
    Phys Chem Chem Phys; 2013 May; 15(17):6190-5. PubMed ID: 23364757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of adsorbed F, OH, and Cl ions on formaldehyde adsorption performance and mechanism of anatase TiO2 nanosheets with exposed {001} facets.
    Zhou P; Zhu X; Yu J; Xiao W
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):8165-72. PubMed ID: 23915356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding A-site tuning effect on formaldehyde catalytic oxidation over La-Mn perovskite catalysts.
    Ding J; Liu J; Yang Y; Zhao L; Yu Y
    J Hazard Mater; 2022 Jan; 422():126931. PubMed ID: 34425429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NH
    Koust S; Adamsen KC; Kolsbjerg EL; Li Z; Hammer B; Wendt S; Lauritsen JV
    J Chem Phys; 2018 Mar; 148(12):124704. PubMed ID: 29604858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single Mn atom modulated molecular oxygen activation over TiO
    Liu X; Ling C; Chen X; Gu H; Zhan G; Liang C; Wei K; Wu X; Wang K; Wang G
    J Colloid Interface Sci; 2024 Jul; 666():12-21. PubMed ID: 38582040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The adsorption of α-cyanoacrylic acid on anatase TiO2 (101) and (001) surfaces: a density functional theory study.
    Ma JG; Zhang CR; Gong JJ; Yang B; Zhang HM; Wang W; Wu YZ; Chen YH; Chen HS
    J Chem Phys; 2014 Dec; 141(23):234705. PubMed ID: 25527955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging oxygen molecular adsorption and dissociation on the Ti site of rutile TiO
    Wen HF; Sang H; Sugawara Y; Li YJ
    Phys Chem Chem Phys; 2020 Sep; 22(35):19795-19801. PubMed ID: 32844830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photo-catalytic degradation of mixed gaseous HCHO and C
    Lin Z; Shen W; Roux JC; Xi H
    J Hazard Mater; 2020 Apr; 388():121779. PubMed ID: 31848097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elimination of formaldehyde over Cu-Al2O3 catalyst at room temperature.
    Zhang CB; Shi XY; Gao HW; He H
    J Environ Sci (China); 2005; 17(3):429-32. PubMed ID: 16083117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Treatment of highly concentrated formaldehyde effluent using adsorption and ultrasonic dissociation on mesoporous copper iodide (CuI) nano-powder.
    Vakylabad AB
    J Environ Manage; 2021 May; 285():112085. PubMed ID: 33581458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomistic Origins of Surface Defects in CH
    Liu Y; Palotas K; Yuan X; Hou T; Lin H; Li Y; Lee ST
    ACS Nano; 2017 Feb; 11(2):2060-2065. PubMed ID: 28125775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. VO Cluster-Stabilized H
    Tong X; Price SP; Robins JC; Ridge C; Kim HY; Kemper P; Metiu H; Bowers MT; Buratto SK
    J Phys Chem C Nanomater Interfaces; 2022 Oct; 126(42):17975-17982. PubMed ID: 36330165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.