These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 31182007)

  • 1. An advanced approach to identify antimicrobial peptides and their function types for penaeus through machine learning strategies.
    Lin Y; Cai Y; Liu J; Lin C; Liu X
    BMC Bioinformatics; 2019 Jun; 20(Suppl 8):291. PubMed ID: 31182007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou's general PseAAC.
    Meher PK; Sahu TK; Saini V; Rao AR
    Sci Rep; 2017 Feb; 7():42362. PubMed ID: 28205576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization and Identification of Natural Antimicrobial Peptides on Different Organisms.
    Chung CR; Jhong JH; Wang Z; Chen S; Wan Y; Horng JT; Lee TY
    Int J Mol Sci; 2020 Feb; 21(3):. PubMed ID: 32024233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping membrane activity in undiscovered peptide sequence space using machine learning.
    Lee EY; Fulan BM; Wong GC; Ferguson AL
    Proc Natl Acad Sci U S A; 2016 Nov; 113(48):13588-13593. PubMed ID: 27849600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational resources and tools for antimicrobial peptides.
    Liu S; Fan L; Sun J; Lao X; Zheng H
    J Pept Sci; 2017 Jan; 23(1):4-12. PubMed ID: 27966278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detecting antimicrobial peptides by exploring the mutual information of their sequences.
    Tripathi V; Tripathi P
    J Biomol Struct Dyn; 2020 Oct; 38(17):5037-5043. PubMed ID: 31760879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AMAP: Hierarchical multi-label prediction of biologically active and antimicrobial peptides.
    Gull S; Shamim N; Minhas F
    Comput Biol Med; 2019 Apr; 107():172-181. PubMed ID: 30831306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning-enabled predictive modeling to precisely identify the antimicrobial peptides.
    Wani MA; Garg P; Roy KK
    Med Biol Eng Comput; 2021 Nov; 59(11-12):2397-2408. PubMed ID: 34632545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imbalanced multi-label learning for identifying antimicrobial peptides and their functional types.
    Lin W; Xu D
    Bioinformatics; 2016 Dec; 32(24):3745-3752. PubMed ID: 27565585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using an Ensemble to Identify and Classify Macroalgae Antimicrobial Peptides.
    Caprani MC; Healy J; Slattery O; O'Keeffe J
    Interdiscip Sci; 2021 Jun; 13(2):321-333. PubMed ID: 33978916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ensemble-AMPPred: Robust AMP Prediction and Recognition Using the Ensemble Learning Method with a New Hybrid Feature for Differentiating AMPs.
    Lertampaiporn S; Vorapreeda T; Hongsthong A; Thammarongtham C
    Genes (Basel); 2021 Jan; 12(2):. PubMed ID: 33494403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. iAMP-CA2L: a new CNN-BiLSTM-SVM classifier based on cellular automata image for identifying antimicrobial peptides and their functional types.
    Xiao X; Shao YT; Cheng X; Stamatovic B
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34086856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining genetic algorithm with machine learning strategies for designing potent antimicrobial peptides.
    Boone K; Wisdom C; Camarda K; Spencer P; Tamerler C
    BMC Bioinformatics; 2021 May; 22(1):239. PubMed ID: 33975547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. iAMP-2L: a two-level multi-label classifier for identifying antimicrobial peptides and their functional types.
    Xiao X; Wang P; Lin WZ; Jia JH; Chou KC
    Anal Biochem; 2013 May; 436(2):168-77. PubMed ID: 23395824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review on antimicrobial peptides databases and the computational tools.
    Ramazi S; Mohammadi N; Allahverdi A; Khalili E; Abdolmaleki P
    Database (Oxford); 2022 Mar; 2022():. PubMed ID: 35305010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cationic antimicrobial peptides in penaeid shrimp.
    Tassanakajon A; Amparyup P; Somboonwiwat K; Supungul P
    Mar Biotechnol (NY); 2010 Oct; 12(5):487-505. PubMed ID: 20379756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. iAMPCN: a deep-learning approach for identifying antimicrobial peptides and their functional activities.
    Xu J; Li F; Li C; Guo X; Landersdorfer C; Shen HH; Peleg AY; Li J; Imoto S; Yao J; Akutsu T; Song J
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37369638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive assessment of machine learning-based methods for predicting antimicrobial peptides.
    Xu J; Li F; Leier A; Xiang D; Shen HH; Marquez Lago TT; Li J; Yu DJ; Song J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33774670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CAMP: a useful resource for research on antimicrobial peptides.
    Thomas S; Karnik S; Barai RS; Jayaraman VK; Idicula-Thomas S
    Nucleic Acids Res; 2010 Jan; 38(Database issue):D774-80. PubMed ID: 19923233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collection of antimicrobial peptides database and its derivatives: Applications and beyond.
    Waghu FH; Idicula-Thomas S
    Protein Sci; 2020 Jan; 29(1):36-42. PubMed ID: 31441165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.