BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 31182281)

  • 1. Conversion of human fibroblasts into functional Leydig-like cells by small molecules and a single factor.
    Zhou J; Hou Y; Zhang Z; Xing X; Zou X; Zhong L; Huang H; Zhang Z; Sun J
    Biochem Biophys Res Commun; 2019 Aug; 516(1):1-7. PubMed ID: 31182281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion of Fibroblast into Functional Leydig-like Cell Using Defined Small Molecules.
    Yang Y; Zhou C; Zhang T; Li Q; Mei J; Liang J; Li Z; Li H; Xiang Q; Zhang Q; Zhang L; Huang Y
    Stem Cell Reports; 2020 Aug; 15(2):408-423. PubMed ID: 32735821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct Reprogramming of Mouse Fibroblasts toward Leydig-like Cells by Defined Factors.
    Yang Y; Li Z; Wu X; Chen H; Xu W; Xiang Q; Zhang Q; Chen J; Ge RS; Su Z; Huang Y
    Stem Cell Reports; 2017 Jan; 8(1):39-53. PubMed ID: 28017657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small molecules enable cardiac reprogramming of mouse fibroblasts with a single factor, Oct4.
    Wang H; Cao N; Spencer CI; Nie B; Ma T; Xu T; Zhang Y; Wang X; Srivastava D; Ding S
    Cell Rep; 2014 Mar; 6(5):951-60. PubMed ID: 24561253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of Leydig-like cells: approaches, characterization, and challenges.
    Li ZH; Lu JD; Li SJ; Chen HL; Su ZJ
    Asian J Androl; 2022; 24(4):335-344. PubMed ID: 35017389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR/dCas9-mediated activation of multiple endogenous target genes directly converts human foreskin fibroblasts into Leydig-like cells.
    Huang H; Zou X; Zhong L; Hou Y; Zhou J; Zhang Z; Xing X; Sun J
    J Cell Mol Med; 2019 Sep; 23(9):6072-6084. PubMed ID: 31264792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid and Efficient Conversion of Human Fibroblasts into Functional Neurons by Small Molecules.
    Yang Y; Chen R; Wu X; Zhao Y; Fan Y; Xiao Z; Han J; Sun L; Wang X; Dai J
    Stem Cell Reports; 2019 Nov; 13(5):862-876. PubMed ID: 31631018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A combination of small molecules directly reprograms mouse fibroblasts into neural stem cells.
    Zheng J; Choi KA; Kang PJ; Hyeon S; Kwon S; Moon JH; Hwang I; Kim YI; Kim YS; Yoon BS; Park G; Lee J; Hong S; You S
    Biochem Biophys Res Commun; 2016 Jul; 476(1):42-8. PubMed ID: 27207831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directed mouse embryonic stem cells into leydig-like cells rescue testosterone-deficient male rats in vivo.
    Yang Y; Su Z; Xu W; Luo J; Liang R; Xiang Q; Zhang Q; Ge RS; Huang Y
    Stem Cells Dev; 2015 Feb; 24(4):459-70. PubMed ID: 25340537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pharmacological Reprogramming of Somatic Cells for Regenerative Medicine.
    Xie M; Tang S; Li K; Ding S
    Acc Chem Res; 2017 May; 50(5):1202-1211. PubMed ID: 28453285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leydig-like cells derived from reprogrammed human foreskin fibroblasts by CRISPR/dCas9 increase the level of serum testosterone in castrated male rats.
    Huang H; Zhong L; Zhou J; Hou Y; Zhang Z; Xing X; Sun J
    J Cell Mol Med; 2020 Apr; 24(7):3971-3981. PubMed ID: 32160419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical conversion of human lung fibroblasts into neuronal cells.
    Wan XY; Xu LY; Li B; Sun QH; Ji QL; Huang DD; Zhao L; Xiao YT
    Int J Mol Med; 2018 Mar; 41(3):1463-1468. PubMed ID: 29328434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pluripotent stem cells induced from mouse neural stem cells and small intestinal epithelial cells by small molecule compounds.
    Ye J; Ge J; Zhang X; Cheng L; Zhang Z; He S; Wang Y; Lin H; Yang W; Liu J; Zhao Y; Deng H
    Cell Res; 2016 Jan; 26(1):34-45. PubMed ID: 26704449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conversion of human fibroblasts into functional cardiomyocytes by small molecules.
    Cao N; Huang Y; Zheng J; Spencer CI; Zhang Y; Fu JD; Nie B; Xie M; Zhang M; Wang H; Ma T; Xu T; Shi G; Srivastava D; Ding S
    Science; 2016 Jun; 352(6290):1216-20. PubMed ID: 27127239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-course effects of human recombinant luteinizing hormone on porcine Leydig cell specific differentiated functions.
    Lejeune H; Sanchez P; Chuzel F; Langlois D; Saez JM
    Mol Cell Endocrinol; 1998 Sep; 144(1-2):59-69. PubMed ID: 9863627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical-induced cardiac reprogramming in vivo.
    Huang C; Tu W; Fu Y; Wang J; Xie X
    Cell Res; 2018 Jun; 28(6):686-689. PubMed ID: 29670223
    [No Abstract]   [Full Text] [Related]  

  • 17. Differentiation of human induced pluripotent stem cells into Leydig-like cells with molecular compounds.
    Chen X; Li C; Chen Y; Xi H; Zhao S; Ma L; Xu Z; Han Z; Zhao J; Ge R; Guo X
    Cell Death Dis; 2019 Mar; 10(3):220. PubMed ID: 30833541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An autofluorescence-based isolation of Leydig cells for testosterone deficiency treatment.
    Luo P; Feng X; Deng R; Wang F; Zhang Y; Li X; Zhang M; Wan Z; Xiang AP; Xia K; Gao Y; Deng C
    Mol Cell Endocrinol; 2021 Sep; 535():111389. PubMed ID: 34229003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein-based direct reprogramming of fibroblasts to neuronal cells using 30Kc19 protein and transcription factor Ascl1.
    Ryu J; Hwang NS; Park HH; Park TH
    Int J Biochem Cell Biol; 2020 Apr; 121():105717. PubMed ID: 32058047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exosome-Mediated Ultra-Effective Direct Conversion of Human Fibroblasts into Neural Progenitor-like Cells.
    Lee YS; Jung WY; Heo H; Park MG; Oh SH; Park BG; Kim S
    ACS Nano; 2018 Mar; 12(3):2531-2538. PubMed ID: 29462562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.