These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 31182504)

  • 1. A cognitive map in a poison frog.
    Liu Y; Day LB; Summers K; Burmeister SS
    J Exp Biol; 2019 Jun; 222(Pt 11):. PubMed ID: 31182504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Orientation by environmental geometry and feature cues in the green and black poison frog (Dendrobates auratus).
    Sorrell CA; Burmeister SS
    Anim Cogn; 2023 Nov; 26(6):2023-2030. PubMed ID: 37698756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Take the long way home: Behaviour of a neotropical frog, Allobates femoralis, in a detour task.
    Munteanu AM; Starnberger I; Pašukonis A; Bugnyar T; Hödl W; Fitch WT
    Behav Processes; 2016 May; 126():71-5. PubMed ID: 26997105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions of spatial strategies producing generalization gradient and blocking: A computational approach.
    Dollé L; Chavarriaga R; Guillot A; Khamassi M
    PLoS Comput Biol; 2018 Apr; 14(4):e1006092. PubMed ID: 29630600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultraviolet radiation influences perch selection by a neotropical poison-dart frog.
    Kats LB; Bucciarelli GM; Schlais DE; Blaustein AR; Han BA
    PLoS One; 2012; 7(12):e51364. PubMed ID: 23251505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating navigation strategies in the Morris Water Maze through deep reinforcement learning.
    Liu A; Borisyuk A
    Neural Netw; 2024 Apr; 172():106050. PubMed ID: 38232429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contrasting parental roles shape sex differences in poison frog space use but not navigational performance.
    Pašukonis A; Serrano-Rojas SJ; Fischer MT; Loretto MC; Shaykevich DA; Rojas B; Ringler M; Roland AB; Marcillo-Lara A; Ringler E; Rodríguez C; Coloma LA; O'Connell LA
    Elife; 2022 Nov; 11():. PubMed ID: 36377473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Navigation outside of the box: what the lab can learn from the field and what the field can learn from the lab.
    Jacobs LF; Menzel R
    Mov Ecol; 2014; 2(1):3. PubMed ID: 25520814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tadpoles of the dyeing poison dart frog Dendrobates tinctorius (Cuvier, 1797) from eastern Amazonia.
    Ferro M; Dias PHDS; Kaefer IL; Ferreira AS; Tavares-Pinheiro R; Freitas AP; Costa-Campos CE
    Zootaxa; 2024 Jan; 5399(4):446-450. PubMed ID: 38221144
    [No Abstract]   [Full Text] [Related]  

  • 10. Exploration patterns shape cognitive map learning.
    Brunec IK; Nantais MM; Sutton JE; Epstein RA; Newcombe NS
    Cognition; 2023 Apr; 233():105360. PubMed ID: 36549130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning-Induced Shifts in Mice Navigational Strategies Are Unveiled by a Minimal Behavioral Model of Spatial Exploration.
    Vallianatou CA; Alonso A; Aleman AZ; Genzel L; Stella F
    eNeuro; 2021; 8(5):. PubMed ID: 34330819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding and sequestration of poison frog alkaloids by a plasma globulin.
    Alvarez-Buylla A; Fischer MT; Moya Garzon MD; Rangel AE; Tapia EE; Tanzo JT; Soh HT; Coloma LA; Long JZ; O'Connell LA
    Elife; 2023 Dec; 12():. PubMed ID: 38206862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport makes cities: transit maps as major cognitive frames of metropolitan areas.
    Prabhakar A; Grison E; Lhuillier S; Leprévost F; Gyselinck V; Morgagni S
    Psychol Res; 2024 Apr; 88(3):1060-1080. PubMed ID: 38305865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cognitive maps and the magnetic sense in vertebrates.
    Shirdhankar RN; Malkemper EP
    Curr Opin Neurobiol; 2024 Jun; 86():102880. PubMed ID: 38657284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predictable navigation through spontaneous brain states with cognitive-map-like representations.
    Li S; Li Z; Liu Q; Ren P; Sun L; Cui Z; Liang X
    Prog Neurobiol; 2024 Feb; 233():102570. PubMed ID: 38232783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The format of the cognitive map depends on the structure of the environment.
    Peer M; Nadar C; Epstein RA
    J Exp Psychol Gen; 2024 Jan; 153(1):224-240. PubMed ID: 37843528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From habitat use to social behavior: natural history of a voiceless poison frog,
    Rojas B; Pašukonis A
    PeerJ; 2019; 7():e7648. PubMed ID: 31576237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The search for the cognitive map.
    Newcombe NS
    Proc Natl Acad Sci U S A; 2023 Apr; 120(15):e2303202120. PubMed ID: 37011219
    [No Abstract]   [Full Text] [Related]  

  • 19. Brain size predicts foraging and escaping abilities in the paddy frogs.
    Chen C; Shao W; Zhu X; Yang Y; Jiang Y; Liao W
    Integr Zool; 2023 Sep; 18(5):958-961. PubMed ID: 36519428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Contribution of Internal and External Factors to Human Spatial Navigation.
    Piccardi L; Nori R; Cimadevilla JM; Kozhevnikov M
    Brain Sci; 2024 Jun; 14(6):. PubMed ID: 38928585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.