These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 31182763)
1. Visual Field Prediction using Recurrent Neural Network. Park K; Kim J; Lee J Sci Rep; 2019 Jun; 9(1):8385. PubMed ID: 31182763 [TBL] [Abstract][Full Text] [Related]
2. Data Preprocessing and Augmentation Improved Visual Field Prediction of Recurrent Neural Network with Multi-Central Datasets. Park JR; Kim S; Kim T; Jin SW; Kim JL; Shin J; Lee SU; Jang G; Hu Y; Lee JW Ophthalmic Res; 2023; 66(1):978-991. PubMed ID: 37231880 [TBL] [Abstract][Full Text] [Related]
3. Visual Field Prediction: Evaluating the Clinical Relevance of Deep Learning Models. Eslami M; Kim JA; Zhang M; Boland MV; Wang M; Chang DS; Elze T Ophthalmol Sci; 2023 Mar; 3(1):100222. PubMed ID: 36325476 [TBL] [Abstract][Full Text] [Related]
4. Forecasting future Humphrey Visual Fields using deep learning. Wen JC; Lee CS; Keane PA; Xiao S; Rokem AS; Chen PP; Wu Y; Lee AY PLoS One; 2019; 14(4):e0214875. PubMed ID: 30951547 [TBL] [Abstract][Full Text] [Related]
5. Visual field prediction using a deep bidirectional gated recurrent unit network model. Kim H; Lee J; Moon S; Kim S; Kim T; Jin SW; Kim JL; Shin J; Lee SU; Jang G; Hu Y; Park JR Sci Rep; 2023 Jul; 13(1):11154. PubMed ID: 37429862 [TBL] [Abstract][Full Text] [Related]
6. Bidirectional gated recurrent unit network model can generate future visual field with variable number of input elements. Lee J; Park K; Kim H; Moon S; Kim J; Jin S; Lee S; Lee J PLoS One; 2024; 19(8):e0307498. PubMed ID: 39190660 [TBL] [Abstract][Full Text] [Related]
7. Feasibility of simple machine learning approaches to support detection of non-glaucomatous visual fields in future automated glaucoma clinics. Thomas PBM; Chan T; Nixon T; Muthusamy B; White A Eye (Lond); 2019 Jul; 33(7):1133-1139. PubMed ID: 30833668 [TBL] [Abstract][Full Text] [Related]
9. Comparison of clinicians and an artificial neural network regarding accuracy and certainty in performance of visual field assessment for the diagnosis of glaucoma. Andersson S; Heijl A; Bizios D; Bengtsson B Acta Ophthalmol; 2013 Aug; 91(5):413-7. PubMed ID: 22583841 [TBL] [Abstract][Full Text] [Related]
10. Global and pointwise rates of decay in glaucoma eyes deteriorating according to pointwise event analysis. Nassiri N; Moghimi S; Coleman AL; Law SK; Caprioli J; Nouri-Mahdavi K Invest Ophthalmol Vis Sci; 2013 Feb; 54(2):1208-13. PubMed ID: 23329667 [TBL] [Abstract][Full Text] [Related]
11. From Machine to Machine: An OCT-Trained Deep Learning Algorithm for Objective Quantification of Glaucomatous Damage in Fundus Photographs. Medeiros FA; Jammal AA; Thompson AC Ophthalmology; 2019 Apr; 126(4):513-521. PubMed ID: 30578810 [TBL] [Abstract][Full Text] [Related]
12. An AI approach to dynamic visual field testing. Cho KW; Liu X; Loizou G; Wu JX Comput Biomed Res; 1998 Jun; 31(3):143-63. PubMed ID: 9628747 [TBL] [Abstract][Full Text] [Related]
13. Comparison of Quality and Output of Different Optimal Perimetric Testing Approaches in Children With Glaucoma. Patel DE; Cumberland PM; Walters BC; Russell-Eggitt I; Brookes J; Papadopoulos M; Khaw PT; Viswanathan AC; Garway-Heath D; Cortina-Borja M; Rahi JS; JAMA Ophthalmol; 2018 Feb; 136(2):155-161. PubMed ID: 29285534 [TBL] [Abstract][Full Text] [Related]
14. Visual field progression in glaucoma: estimating the overall significance of deterioration with permutation analyses of pointwise linear regression (PoPLR). O'Leary N; Chauhan BC; Artes PH Invest Ophthalmol Vis Sci; 2012 Oct; 53(11):6776-84. PubMed ID: 22952123 [TBL] [Abstract][Full Text] [Related]
15. Comparison of methods to predict visual field progression in glaucoma. Nouri-Mahdavi K; Hoffman D; Ralli M; Caprioli J Arch Ophthalmol; 2007 Sep; 125(9):1176-81. PubMed ID: 17846355 [TBL] [Abstract][Full Text] [Related]
16. Clustering visual field test points based on rates of progression to improve the prediction of future damage. Hirasawa K; Murata H; Hirasawa H; Mayama C; Asaoka R Invest Ophthalmol Vis Sci; 2014 Oct; 55(11):7681-5. PubMed ID: 25342611 [TBL] [Abstract][Full Text] [Related]
17. Detecting glaucomatous progression with infrequent visual field testing. Anderson AJ; Asokan R; Murata H; Asaoka R Ophthalmic Physiol Opt; 2018 Mar; 38(2):174-182. PubMed ID: 29315705 [TBL] [Abstract][Full Text] [Related]
18. Prediction of the motion of chest internal points using a recurrent neural network trained with real-time recurrent learning for latency compensation in lung cancer radiotherapy. Pohl M; Uesaka M; Demachi K; Bhusal Chhatkuli R Comput Med Imaging Graph; 2021 Jul; 91():101941. PubMed ID: 34265553 [TBL] [Abstract][Full Text] [Related]
19. How Many Visual Fields Are Required to Precisely Predict Future Test Results in Glaucoma Patients When Using Different Trend Analyses? Taketani Y; Murata H; Fujino Y; Mayama C; Asaoka R Invest Ophthalmol Vis Sci; 2015 Jun; 56(6):4076-82. PubMed ID: 26114484 [TBL] [Abstract][Full Text] [Related]
20. Machine Learning in the Detection of the Glaucomatous Disc and Visual Field. Smits DJ; Elze T; Wang H; Pasquale LR Semin Ophthalmol; 2019; 34(4):232-242. PubMed ID: 31132292 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]