These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 31183043)

  • 1. Triperyleno[3,3,3]propellane triimides: achieving a new generation of quasi-
    Lv L; Roberts J; Xiao C; Jia Z; Jiang W; Zhang G; Risko C; Zhang L
    Chem Sci; 2019 May; 10(19):4951-4958. PubMed ID: 31183043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Novel Homoconjugated Propellane Triimide: Synthesis, Structural Analyses, and Gas Separation.
    Chen Y; Zhao Y; Zhao Y; Chen X; Liu X; Li L; Cao D; Wang S; Zhang L
    Angew Chem Int Ed Engl; 2024 Apr; 63(16):e202401706. PubMed ID: 38419479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Giant Rylene Imide-Based Electron Acceptors for Organic Photovoltaics.
    Liang N; Meng D; Wang Z
    Acc Chem Res; 2021 Feb; 54(4):961-975. PubMed ID: 33395252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tailor-made rylene arrays for high performance n-channel semiconductors.
    Jiang W; Li Y; Wang Z
    Acc Chem Res; 2014 Oct; 47(10):3135-47. PubMed ID: 25264816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rylene and related diimides for organic electronics.
    Zhan X; Facchetti A; Barlow S; Marks TJ; Ratner MA; Wasielewski MR; Marder SR
    Adv Mater; 2011 Jan; 23(2):268-84. PubMed ID: 21154741
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Yang K; Li Z; Huang Y; Zeng Z
    Acc Chem Res; 2024 Mar; 57(5):763-775. PubMed ID: 38386871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and Application of Rylene Imide Dyes as Organic Semiconducting Materials.
    Feng J; Jiang W; Wang Z
    Chem Asian J; 2018 Jan; 13(1):20-30. PubMed ID: 29143473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and Electronic Properties of Triperyleno[3.3.3]Propellanes: Towards Two-Dimensional Electronic Structures.
    Kodama T; Miyazaki S; Kubo T
    Chempluschem; 2019 Jun; 84(6):599-602. PubMed ID: 31944028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive approach to intrinsic charge carrier mobility in conjugated organic molecules, macromolecules, and supramolecular architectures.
    Saeki A; Koizumi Y; Aida T; Seki S
    Acc Chem Res; 2012 Aug; 45(8):1193-202. PubMed ID: 22676381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bis-peri-dinaphtho-rylenes: Facile Synthesis via Radical-Mediated Coupling Reactions and their Distinctive Electronic Structures.
    Shen T; Zou Y; Hou X; Wei H; Ren L; Jiao L; Wu J
    Angew Chem Int Ed Engl; 2023 Nov; 62(45):e202311928. PubMed ID: 37735099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-symmetric Half-Fused B←N Coordinated Diketopyrrolopyrrole Building Block for n-type Semiconducting Polymers.
    Meng J; Dou J; Zhou Z; Chen P; Luo N; Li Y; Luo L; He F; Geng H; Shao X; Zhang HL; Liu Z
    Angew Chem Int Ed Engl; 2023 Jun; 62(23):e202301863. PubMed ID: 37022283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unconventional, chemically stable, and soluble two-dimensional angular polycyclic aromatic hydrocarbons: from molecular design to device applications.
    Zhang L; Cao Y; Colella NS; Liang Y; Brédas JL; Houk KN; Briseno AL
    Acc Chem Res; 2015 Mar; 48(3):500-9. PubMed ID: 25458442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heteroatom-Doped Nanographenes with Structural Precision.
    Wang XY; Yao X; Narita A; Müllen K
    Acc Chem Res; 2019 Sep; 52(9):2491-2505. PubMed ID: 31478641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supramolecular construction of optoelectronic biomaterials.
    Tovar JD
    Acc Chem Res; 2013 Jul; 46(7):1527-37. PubMed ID: 23477363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of Perylene Imide Diones as Platforms for the Development of Pyrazine Based Organic Semiconductors.
    de Echegaray P; Mancheño MJ; Arrechea-Marcos I; Juárez R; López-Espejo G; López Navarrete JT; Ramos MM; Seoane C; Ortiz RP; Segura JL
    J Org Chem; 2016 Nov; 81(22):11256-11267. PubMed ID: 27791365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-Bladed Rylene Propellers with Three-Dimensional Network Assembly for Organic Electronics.
    Meng D; Fu H; Xiao C; Meng X; Winands T; Ma W; Wei W; Fan B; Huo L; Doltsinis NL; Li Y; Sun Y; Wang Z
    J Am Chem Soc; 2016 Aug; 138(32):10184-90. PubMed ID: 27440216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modification of n-type organic semiconductor performance of perylene diimides by substitution in different positions: two-dimensional π-stacking and hydrogen bonding.
    Zhang MX; Zhao GJ
    ChemSusChem; 2012 May; 5(5):879-87. PubMed ID: 22323306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peptide π-Electron Conjugates: Organic Electronics for Biology?
    Ardoña HA; Tovar JD
    Bioconjug Chem; 2015 Dec; 26(12):2290-302. PubMed ID: 26439806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heavy-Atom-Free Room-Temperature Phosphorescent Rylene Imide for High-Performing Organic Photovoltaics.
    Liang N; Liu G; Hu D; Wang K; Li Y; Zhai T; Zhang X; Shuai Z; Yan H; Hou J; Wang Z
    Adv Sci (Weinh); 2022 Jan; 9(3):e2103975. PubMed ID: 34813181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tailored one- and two-dimensional self-assembly of a perylene diimide derivative in organic solvents.
    Usowicz MT; Kelley MJ; Singer KD; Duzhko VV
    J Phys Chem B; 2011 Aug; 115(32):9703-9. PubMed ID: 21714537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.