BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

480 related articles for article (PubMed ID: 31183565)

  • 1. Inkjet printed microfluidic paper-based analytical device (μPAD) for glucose colorimetric detection in artificial urine.
    Zhang H; Smith E; Zhang W; Zhou A
    Biomed Microdevices; 2019 Jun; 21(3):48. PubMed ID: 31183565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single step and mask-free 3D wax printing of microfluidic paper-based analytical devices for glucose and nitrite assays.
    Chiang CK; Kurniawan A; Kao CY; Wang MJ
    Talanta; 2019 Mar; 194():837-845. PubMed ID: 30609613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel screen-printed microfluidic paper-based electrochemical device for detection of glucose and uric acid in urine.
    Yao Y; Zhang C
    Biomed Microdevices; 2016 Oct; 18(5):92. PubMed ID: 27628060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D Multilayered paper- and thread/paper-based microfluidic devices for bioassays.
    Neris NM; Guevara RD; Gonzalez A; Gomez FA
    Electrophoresis; 2019 Jan; 40(2):296-303. PubMed ID: 30383293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An instrument-free, screen-printed paper microfluidic device that enables bio and chemical sensing.
    Mohammadi S; Maeki M; Mohamadi RM; Ishida A; Tani H; Tokeshi M
    Analyst; 2015 Oct; 140(19):6493-9. PubMed ID: 26207925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Paper-based microfluidic devices for glucose assays employing a metal-organic framework (MOF).
    Ilacas GC; Basa A; Nelms KJ; Sosa JD; Liu Y; Gomez FA
    Anal Chim Acta; 2019 May; 1055():74-80. PubMed ID: 30782373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly sensitive colorimetric detection of glucose and uric acid in biological fluids using chitosan-modified paper microfluidic devices.
    Gabriel EF; Garcia PT; Cardoso TM; Lopes FM; Martins FT; Coltro WK
    Analyst; 2016 Aug; 141(15):4749-56. PubMed ID: 27272206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanomaterials integrated with microfluidic paper-based analytical devices for enzyme-free glucose quantification.
    Khachornsakkul K; Rybicki FJ; Sonkusale S
    Talanta; 2023 Aug; 260():124538. PubMed ID: 37087948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thread/paper- and paper-based microfluidic devices for glucose assays employing artificial neural networks.
    Lee W; Gonzalez A; Arguelles P; Guevara R; Gonzalez-Guerrero MJ; Gomez FA
    Electrophoresis; 2018 Jun; 39(12):1443-1451. PubMed ID: 29660155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. T-shirt ink for one-step screen-printing of hydrophobic barriers for 2D- and 3D-microfluidic paper-based analytical devices.
    Sitanurak J; Fukana N; Wongpakdee T; Thepchuay Y; Ratanawimarnwong N; Amornsakchai T; Nacapricha D
    Talanta; 2019 Dec; 205():120113. PubMed ID: 31450420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic Paper-based Analytical Devices (μPADs): Miniaturization and Enzyme Storage Studies.
    Ilacas G; Gomez FA
    Anal Sci; 2019 Apr; 35(4):379-384. PubMed ID: 30531127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Paper-Plastic Hybrid Microfluidic Device for Smartphone-Based Colorimetric Analysis of Urine.
    Jalal UM; Jin GJ; Shim JS
    Anal Chem; 2017 Dec; 89(24):13160-13166. PubMed ID: 29131592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Smartphone-imaged multilayered paper-based analytical device for colorimetric analysis of carcinoembryonic antigen.
    Wang K; Yang J; Xu H; Cao B; Qin Q; Liao X; Wo Y; Jin Q; Cui D
    Anal Bioanal Chem; 2020 Apr; 412(11):2517-2528. PubMed ID: 32067065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 3D µPAD based on a multi-enzyme organic-inorganic hybrid nanoflower reactor.
    Ariza-Avidad M; Salinas-Castillo A; Capitán-Vallvey LF
    Biosens Bioelectron; 2016 Mar; 77():51-5. PubMed ID: 26386331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic paper-based device for colorimetric determination of glucose based on a metal-organic framework acting as peroxidase mimetic.
    Ortiz-Gómez I; Salinas-Castillo A; García AG; Álvarez-Bermejo JA; de Orbe-Payá I; Rodríguez-Diéguez A; Capitán-Vallvey LF
    Mikrochim Acta; 2017 Dec; 185(1):47. PubMed ID: 29594561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Smartphone-based, sensitive µPAD detection of urinary tract infection and gonorrhea.
    Cho S; Park TS; Nahapetian TG; Yoon JY
    Biosens Bioelectron; 2015 Dec; 74():601-11. PubMed ID: 26190472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel highly flexible, simple, rapid and low-cost fabrication tool for paper-based microfluidic devices (μPADs) using technical drawing pens and in-house formulated aqueous inks.
    Nuchtavorn N; Macka M
    Anal Chim Acta; 2016 May; 919():70-77. PubMed ID: 27086101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A colorimetric assay system for dopamine using microfluidic paper-based analytical devices.
    Liu C; Gomez FA; Miao Y; Cui P; Lee W
    Talanta; 2019 Mar; 194():171-176. PubMed ID: 30609518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inkjet-printed microfluidic multianalyte chemical sensing paper.
    Abe K; Suzuki K; Citterio D
    Anal Chem; 2008 Sep; 80(18):6928-34. PubMed ID: 18698798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices.
    Yang X; Forouzan O; Brown TP; Shevkoplyas SS
    Lab Chip; 2012 Jan; 12(2):274-80. PubMed ID: 22094609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.